Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(3): 766-778, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27453469

RESUMEN

The ability to reliably and reproducibly measure any protein of the human proteome in any tissue or cell type would be transformative for understanding systems-level properties as well as specific pathways in physiology and disease. Here, we describe the generation and verification of a compendium of highly specific assays that enable quantification of 99.7% of the 20,277 annotated human proteins by the widely accessible, sensitive, and robust targeted mass spectrometric method selected reaction monitoring, SRM. This human SRMAtlas provides definitive coordinates that conclusively identify the respective peptide in biological samples. We report data on 166,174 proteotypic peptides providing multiple, independent assays to quantify any human protein and numerous spliced variants, non-synonymous mutations, and post-translational modifications. The data are freely accessible as a resource at http://www.srmatlas.org/, and we demonstrate its utility by examining the network response to inhibition of cholesterol synthesis in liver cells and to docetaxel in prostate cancer lines.


Asunto(s)
Bases de Datos de Proteínas , Proteoma , Acceso a la Información , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Colesterol/biosíntesis , Docetaxel , Femenino , Humanos , Internet , Hígado/efectos de los fármacos , Masculino , Mutación , Neoplasias de la Próstata/tratamiento farmacológico , Empalme del ARN , Taxoides/uso terapéutico
2.
J Pharmacokinet Pharmacodyn ; 49(5): 539-556, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35933452

RESUMEN

Physiologically-based pharmacokinetic and cellular kinetic models are used extensively to predict concentration profiles of drugs or adoptively transferred cells in patients and laboratory animals. Models are fit to data by the numerical optimisation of appropriate parameter values. When quantities such as the area under the curve are all that is desired, only a close qualitative fit to data is required. When the biological interpretation of the model that produced the fit is important, an assessment of uncertainties is often also warranted. Often, a goal of fitting PBPK models to data is to estimate parameter values, which can then be used to assess characteristics of the fit system or applied to inform new modelling efforts and extrapolation, to inform a prediction under new conditions. However, the parameters that yield a particular model output may not necessarily be unique, in which case the parameters are said to be unidentifiable. We show that the parameters in three published physiologically-based pharmacokinetic models are practically (deterministically) unidentifiable and that it is challenging to assess the associated parameter uncertainty with simple curve fitting techniques. This result could affect many physiologically-based pharmacokinetic models, and we advocate more widespread use of thorough techniques and analyses to address these issues, such as established Markov Chain Monte Carlo and Bayesian methodologies. Greater handling and reporting of uncertainty and identifiability of fit parameters would directly and positively impact interpretation and translation for physiologically-based model applications, enhancing their capacity to inform new model development efforts and extrapolation in support of future clinical decision-making.


Asunto(s)
Modelos Biológicos , Animales , Teorema de Bayes , Cadenas de Markov , Método de Montecarlo , Incertidumbre
3.
PLoS Med ; 17(11): e1003323, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33147277

RESUMEN

BACKGROUND: The tumor microenvironment (TME) is increasingly appreciated as an important determinant of cancer outcome, including in multiple myeloma (MM). However, most myeloma microenvironment studies have been based on bone marrow (BM) aspirates, which often do not fully reflect the cellular content of BM tissue itself. To address this limitation in myeloma research, we systematically characterized the whole bone marrow (WBM) microenvironment during premalignant, baseline, on treatment, and post-treatment phases. METHODS AND FINDINGS: Between 2004 and 2019, 998 BM samples were taken from 436 patients with newly diagnosed MM (NDMM) at the University of Arkansas for Medical Sciences in Little Rock, Arkansas, United States of America. These patients were 61% male and 39% female, 89% White, 8% Black, and 3% other/refused, with a mean age of 58 years. Using WBM and matched cluster of differentiation (CD)138-selected tumor gene expression to control for tumor burden, we identified a subgroup of patients with an adverse TME associated with 17 fewer months of progression-free survival (PFS) (95% confidence interval [CI] 5-29, 49-69 versus 70-82 months, χ2 p = 0.001) and 15 fewer months of overall survival (OS; 95% CI -1 to 31, 92-120 versus 113-129 months, χ2 p = 0.036). Using immunohistochemistry-validated computational tools that identify distinct cell types from bulk gene expression, we showed that the adverse outcome was correlated with elevated CD8+ T cell and reduced granulocytic cell proportions. This microenvironment develops during the progression of premalignant to malignant disease and becomes less prevalent after therapy, in which it is associated with improved outcomes. In patients with quantified International Staging System (ISS) stage and 70-gene Prognostic Risk Score (GEP-70) scores, taking the microenvironment into consideration would have identified an additional 40 out of 290 patients (14%, premutation p = 0.001) with significantly worse outcomes (PFS, 95% CI 6-36, 49-73 versus 74-90 months) who were not identified by existing clinical (ISS stage III) and tumor (GEP-70) criteria as high risk. The main limitations of this study are that it relies on computationally identified cell types and that patients were treated with thalidomide rather than current therapies. CONCLUSIONS: In this study, we observe that granulocyte signatures in the MM TME contribute to a more accurate prognosis. This implies that future researchers and clinicians treating patients should quantify TME components, in particular monocytes and granulocytes, which are often ignored in microenvironment studies.


Asunto(s)
Médula Ósea/patología , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/patología , Microambiente Tumoral , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/tratamiento farmacológico , Pronóstico , Carga Tumoral
4.
Nature ; 505(7485): 691-5, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24284630

RESUMEN

The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.


Asunto(s)
Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferones/inmunología , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Virus/inmunología , Animales , Análisis por Conglomerados , Virus ADN/inmunología , Virus ADN/patogenicidad , Citometría de Flujo , Biblioteca de Genes , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/genética , Virus ARN/inmunología , Virus ARN/patogenicidad , Factor de Transcripción STAT1/metabolismo , Especificidad por Sustrato , Virus/clasificación , Virus/patogenicidad
5.
Nature ; 490(7420): 421-5, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22982991

RESUMEN

Antiviral responses must be tightly regulated to defend rapidly against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses and their transcription is regulated by a variety of transcription factors; principal among these is the family of interferon regulatory factors (IRFs). The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3-IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/inmunología , Inflamación/inmunología , Inflamación/patología , Factor 7 Regulador del Interferón/metabolismo , Vesiculovirus/inmunología , Animales , Femenino , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Inflamación/genética , Factor 7 Regulador del Interferón/deficiencia , Factor 7 Regulador del Interferón/genética , Interferón Tipo I/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados
6.
Nucleic Acids Res ; 44(22): 10554-10570, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27625397

RESUMEN

The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry. Multiple components of the nuclear pore complex (NPC) and a second coiled-coil protein, which we termed NUP-2, were found. NUP-2 has a punctate distribution at the nuclear periphery throughout the cell cycle and is in close proximity to NUP-1, the NPCs and telomeric chromosomal regions. RNAi-mediated silencing of NUP-2 leads to severe proliferation defects, gross alterations to nuclear structure, chromosomal organization and nuclear envelope architecture. Further, transcription is altered at telomere-proximal variant surface glycoprotein (VSG) expression sites (ESs), suggesting a role in controlling ES expression, although NUP-2 silencing does not increase VSG switching. Transcriptome analysis suggests specific alterations to Pol I-dependent transcription. NUP-1 is mislocalized in NUP-2 knockdown cells and vice versa, implying that NUP-1 and NUP-2 form a co-dependent network and identifying NUP-2 as a second trypanosomatid nuclear lamina component.


Asunto(s)
Lámina Nuclear/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Lámina Nuclear/ultraestructura , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/genética , Transporte de Proteínas , Proteínas Protozoarias/genética , Transcriptoma , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestructura
8.
Nucleic Acids Res ; 42(3): 1442-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24185701

RESUMEN

Systems scale models provide the foundation for an effective iterative cycle between hypothesis generation, experiment and model refinement. Such models also enable predictions facilitating the understanding of biological complexity and the control of biological systems. Here, we demonstrate the reconstruction of a globally predictive gene regulatory model from public data: a model that can drive rational experiment design and reveal new regulatory mechanisms underlying responses to novel environments. Specifically, using ∼ 1500 publically available genome-wide transcriptome data sets from Saccharomyces cerevisiae, we have reconstructed an environment and gene regulatory influence network that accurately predicts regulatory mechanisms and gene expression changes on exposure of cells to completely novel environments. Focusing on transcriptional networks that induce peroxisomes biogenesis, the model-guided experiments allow us to expand a core regulatory network to include novel transcriptional influences and linkage across signaling and transcription. Thus, the approach and model provides a multi-scalar picture of gene dynamics and are powerful resources for exploiting extant data to rationally guide experimentation. The techniques outlined here are generally applicable to any biological system, which is especially important when experimental systems are challenging and samples are difficult and expensive to obtain-a common problem in laboratory animal and human studies.


Asunto(s)
Redes Reguladoras de Genes , Biología de Sistemas/métodos , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética
9.
Mol Microbiol ; 92(2): 369-82, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24612392

RESUMEN

It is known that environmental context influences the degree of regulation at the transcriptional and post-transcriptional levels. However, the principles governing the differential usage and interplay of regulation at these two levels are not clear. Here, we show that the integration of transcriptional and post-transcriptional regulatory mechanisms in a characteristic network motif drives efficient environment-dependent state transitions. Through phenotypic screening, systems analysis, and rigorous experimental validation, we discovered an RNase (VNG2099C) in Halobacterium salinarum that is transcriptionally co-regulated with genes of the aerobic physiologic state but acts on transcripts of the anaerobic state. Through modelling and experimentation we show that this arrangement generates an efficient state-transition switch, within which RNase-repression of a transcriptional positive autoregulation (RPAR) loop is critical for shutting down ATP-consuming active potassium uptake to conserve energy required for salinity adaptation under aerobic, high potassium, or dark conditions. Subsequently, we discovered that many Escherichia coli operons with energy-associated functions are also putatively controlled by RPAR indicating that this network motif may have evolved independently in phylogenetically distant organisms. Thus, our data suggest that interplay of transcriptional and post-transcriptional regulation in the RPAR motif is a generalized principle for efficient environment-dependent state transitions across prokaryotes.


Asunto(s)
Regulación de la Expresión Génica , Halobacterium salinarum/genética , Homeostasis , Interferencia de ARN , Ribonucleasas/metabolismo , Transcripción Genética , Aerobiosis , Anaerobiosis , Metabolismo Energético , Escherichia coli/genética , Escherichia coli/metabolismo , Halobacterium salinarum/metabolismo , Presión Osmótica , Fenotipo , Potasio/metabolismo , Estrés Fisiológico
10.
PLoS Biol ; 10(3): e1001287, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479148

RESUMEN

A unifying feature of eukaryotic nuclear organization is genome segregation into transcriptionally active euchromatin and transcriptionally repressed heterochromatin. In metazoa, lamin proteins preserve nuclear integrity and higher order heterochromatin organization at the nuclear periphery, but no non-metazoan lamin orthologues have been identified, despite the likely presence of nucleoskeletal elements in many lineages. This suggests a metazoan-specific origin for lamins, and therefore that distinct protein elements must compose the nucleoskeleton in other lineages. The trypanosomatids are highly divergent organisms and possess well-documented but remarkably distinct mechanisms for control of gene expression, including polycistronic transcription and trans-splicing. NUP-1 is a large protein localizing to the nuclear periphery of Trypanosoma brucei and a candidate nucleoskeletal component. We sought to determine if NUP-1 mediates heterochromatin organization and gene regulation at the nuclear periphery by examining the influence of NUP-1 knockdown on morphology, chromatin positioning, and transcription. We demonstrate that NUP-1 is essential and part of a stable network at the inner face of the trypanosome nuclear envelope, since knockdown cells have abnormally shaped nuclei with compromised structural integrity. NUP-1 knockdown also disrupts organization of nuclear pore complexes and chromosomes. Most significantly, we find that NUP-1 is required to maintain the silenced state of developmentally regulated genes at the nuclear periphery; NUP-1 knockdown results in highly specific mis-regulation of telomere-proximal silenced variant surface glycoprotein (VSG) expression sites and procyclin loci, indicating a disruption to normal chromatin organization essential to life-cycle progression. Further, NUP-1 depletion leads to increased VSG switching and therefore appears to have a role in control of antigenic variation. Thus, analogous to vertebrate lamins, NUP-1 is a major component of the nucleoskeleton with key roles in organization of the nuclear periphery, heterochromatin, and epigenetic control of developmentally regulated loci.


Asunto(s)
Regulación de la Expresión Génica , Laminas/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Variación Antigénica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromosomas/genética , Cromosomas/metabolismo , Técnicas de Silenciamiento del Gen , Genes Protozoarios , Sitios Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Laminas/genética , Microscopía Electrónica de Transmisión , Mitosis , Membrana Nuclear/genética , Proteínas de Complejo Poro Nuclear , Proteínas Nucleares/genética , Conformación Proteica , Transporte de Proteínas , Proteínas Protozoarias/genética , Telómero/genética , Telómero/metabolismo , Transcripción Genética , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
11.
PLoS Comput Biol ; 9(1): e1002880, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349626

RESUMEN

Copper (Cu) is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.


Asunto(s)
Cobre/metabolismo , Metalochaperonas/fisiología , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Halobacterium salinarum/metabolismo , Halobacterium salinarum/fisiología , Homeostasis , Transporte Iónico , Espectrometría de Masas , Metalochaperonas/genética , Modelos Teóricos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Transcripción Genética
12.
Mol Syst Biol ; 8: 577, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22531117

RESUMEN

Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.


Asunto(s)
Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Saccharomyces cerevisiae/genética , Biología de Sistemas/métodos , Citometría de Flujo , Redes Reguladoras de Genes , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal , Regulación hacia Arriba
13.
PLoS Comput Biol ; 7(6): e1002091, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21738459

RESUMEN

When living systems detect changes in their external environment their response must be measured to balance the need to react appropriately with the need to remain stable, ignoring insignificant signals. Because this is a fundamental challenge of all biological systems that execute programs in response to stimuli, we developed a generalized time-frequency analysis (TFA) framework to systematically explore the dynamical properties of biomolecular networks. Using TFA, we focused on two well-characterized yeast gene regulatory networks responsive to carbon-source shifts and a mammalian innate immune regulatory network responsive to lipopolysaccharides (LPS). The networks are comprised of two different basic architectures. Dual positive and negative feedback loops make up the yeast galactose network; whereas overlapping positive and negative feed-forward loops are common to the yeast fatty-acid response network and the LPS-induced network of macrophages. TFA revealed remarkably distinct network behaviors in terms of trade-offs in responsiveness and noise suppression that are appropriately tuned to each biological response. The wild type galactose network was found to be highly responsive while the oleate network has greater noise suppression ability. The LPS network appeared more balanced, exhibiting less bias toward noise suppression or responsiveness. Exploration of the network parameter space exposed dramatic differences in system behaviors for each network. These studies highlight fundamental structural and dynamical principles that underlie each network, reveal constrained parameters of positive and negative feedback and feed-forward strengths that tune the networks appropriately for their respective biological roles, and demonstrate the general utility of the TFA approach for systems and synthetic biology.


Asunto(s)
Ambiente , Retroalimentación Fisiológica/fisiología , Redes Reguladoras de Genes/fisiología , Modelos Biológicos , Biología de Sistemas , Animales , Simulación por Computador , Galactosa/genética , Galactosa/metabolismo , Regulación de la Expresión Génica/fisiología , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Ratones , Ácido Oléico/genética , Ácido Oléico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Tiempo
14.
Mol Cell Proteomics ; 9(9): 2076-88, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20395639

RESUMEN

Phosphorylation of proteins is a key posttranslational modification in cellular signaling, regulating many aspects of cellular responses. We used a quantitative, integrated, phosphoproteomics approach to characterize the cellular responses of the yeast Saccharomyces cerevisiae to the fatty acid oleic acid, a molecule with broad human health implications and a potent inducer of peroxisomes. A combination of cryolysis and urea solubilization was used to minimize the opportunity for reorientation of the phosphoproteome, and hydrophilic interaction liquid chromatography and IMAC chemistries were used to fractionate and enrich for phosphopeptides. Using these approaches, numerous phosphorylated peptides specific to oleate-induced and glucose-repressed conditions were identified and mapped to known signaling pathways. These include several transcription factors, two of which, Pip2p and Cst6p, must be phosphorylated for the normal transcriptional response of fatty acid-responsive loci encoding peroxisomal proteins. The phosphoproteome data were integrated with results from genome-wide assays studying the effects of signaling molecule deletions and known protein-protein interactions to generate a putative fatty acid-responsive signaling network. In this network, the most highly connected nodes are those with the largest effects on cellular responses to oleic acid. These properties are consistent with a scale-free topology, demonstrating that scale-free properties are conserved in condition-specific networks.


Asunto(s)
Peroxisomas , Fosfoproteínas/metabolismo , Proteómica , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Espectrometría de Masas , Análisis de Secuencia por Matrices de Oligonucleótidos
15.
Front Genet ; 12: 667382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512714

RESUMEN

The maintenance and function of tissues in health and disease depends on cell-cell communication. This work shows how high-level features, representing cell-cell communication, can be defined and used to associate certain signaling "axes" with clinical outcomes. We generated a scaffold of cell-cell interactions and defined a probabilistic method for creating per-patient weighted graphs based on gene expression and cell deconvolution results. With this method, we generated over 9,000 graphs for The Cancer Genome Atlas (TCGA) patient samples, each representing likely channels of intercellular communication in the tumor microenvironment (TME). It was shown that cell-cell edges were strongly associated with disease severity and progression, in terms of survival time and tumor stage. Within individual tumor types, there are predominant cell types, and the collection of associated edges were found to be predictive of clinical phenotypes. Additionally, genes associated with differentially weighted edges were enriched in Gene Ontology terms associated with tissue structure and immune response. Code, data, and notebooks are provided to enable the application of this method to any expression dataset (https://github.com/IlyaLab/Pan-Cancer-Cell-Cell-Comm-Net).

16.
AAPS J ; 23(5): 103, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453265

RESUMEN

Avadomide is a cereblon E3 ligase modulator and a potent antitumor and immunomodulatory agent. Avadomide trials are challenged by neutropenia as a major adverse event and a dose-limiting toxicity. Intermittent dosing schedules supported by preclinical data provide a strategy to reduce frequency and severity of neutropenia; however, the identification of optimal dosing schedules remains a clinical challenge. Quantitative systems pharmacology (QSP) modeling offers opportunities for virtual screening of efficacy and toxicity levels produced by alternative dose and schedule regimens, thereby supporting decision-making in translational drug development. We formulated a QSP model to capture the mechanism of avadomide-induced neutropenia, which involves cereblon-mediated degradation of transcription factor Ikaros, resulting in a maturation block of the neutrophil lineage. The neutropenia model was integrated with avadomide-specific pharmacokinetic and pharmacodynamic models to capture dose-dependent effects. Additionally, we generated a disease-specific virtual patient population to represent the variability in patient characteristics and response to treatment observed for a diffuse large B-cell lymphoma trial cohort. Model utility was demonstrated by simulating the avadomide effect in the virtual population for various dosing schedules and determining the incidence of high-grade neutropenia, its duration, and the probability of recovery to low-grade neutropenia.


Asunto(s)
Antineoplásicos/efectos adversos , Modelos Biológicos , Neutropenia/prevención & control , Piperidonas/efectos adversos , Quinazolinonas/efectos adversos , Antineoplásicos/administración & dosificación , Variación Biológica Poblacional , Simulación por Computador , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Humanos , Farmacología en Red , Neutropenia/inducido químicamente , Neutropenia/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Piperidonas/administración & dosificación , Quinazolinonas/administración & dosificación
17.
NPJ Precis Oncol ; 5(1): 60, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183722

RESUMEN

Despite recent advancements in the treatment of multiple myeloma (MM), nearly all patients ultimately relapse and many become refractory to multiple lines of therapies. Therefore, we not only need the ability to predict which patients are at high risk for disease progression but also a means to understand the mechanisms underlying their risk. Here, we report a transcriptional regulatory network (TRN) for MM inferred from cross-sectional multi-omics data from 881 patients that predicts how 124 chromosomal abnormalities and somatic mutations causally perturb 392 transcription regulators of 8549 genes to manifest in distinct clinical phenotypes and outcomes. We identified 141 genetic programs whose activity profiles stratify patients into 25 distinct transcriptional states and proved to be more predictive of outcomes than did mutations. The coherence of these programs and accuracy of our network-based risk prediction was validated in two independent datasets. We observed subtype-specific vulnerabilities to interventions with existing drugs and revealed plausible mechanisms for relapse, including the establishment of an immunosuppressive microenvironment. Investigation of the t(4;14) clinical subtype using the TRN revealed that 16% of these patients exhibit an extreme-risk combination of genetic programs (median progression-free survival of 5 months) that create a distinct phenotype with targetable genes and pathways.

18.
Gigascience ; 9(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32696951

RESUMEN

BACKGROUND: Mechanistic models, when combined with pertinent data, can improve our knowledge regarding important molecular and cellular mechanisms found in cancer. These models make the prediction of tissue-level response to drug treatment possible, which can lead to new therapies and improved patient outcomes. Here we present a data-driven multiscale modeling framework to study molecular interactions between cancer, stromal, and immune cells found in the tumor microenvironment. We also develop methods to use molecular data available in The Cancer Genome Atlas to generate sample-specific models of cancer. RESULTS: By combining published models of different cells relevant to pancreatic ductal adenocarcinoma (PDAC), we built an agent-based model of the multicellular pancreatic tumor microenvironment, formally describing cell type-specific molecular interactions and cytokine-mediated cell-cell communications. We used an ensemble-based modeling approach to systematically explore how variations in the tumor microenvironment affect the viability of cancer cells. The results suggest that the autocrine loop involving EGF signaling is a key interaction modulator between pancreatic cancer and stellate cells. EGF is also found to be associated with previously described subtypes of PDAC. Moreover, the model allows a systematic exploration of the effect of possible therapeutic perturbations; our simulations suggest that reducing bFGF secretion by stellate cells will have, on average, a positive impact on cancer apoptosis. CONCLUSIONS: The developed framework allows model-driven hypotheses to be generated regarding therapeutically relevant PDAC states with potential molecular and cellular drivers indicating specific intervention strategies.


Asunto(s)
Algoritmos , Carcinoma Ductal Pancreático/etiología , Carcinoma Ductal Pancreático/patología , Susceptibilidad a Enfermedades , Modelos Biológicos , Comunicación Autocrina , Carcinoma Ductal Pancreático/metabolismo , Comunicación Celular/genética , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Especificidad de Órganos , Comunicación Paracrina , Fenotipo
19.
PLoS One ; 14(11): e0224693, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31743345

RESUMEN

Immune cell infiltration of tumors and the tumor microenvironment can be an important component for determining patient outcomes. For example, immune and stromal cell presence inferred by deconvolving patient gene expression data may help identify high risk patients or suggest a course of treatment. One particularly powerful family of deconvolution techniques uses signature matrices of genes that uniquely identify each cell type as determined from single cell type purified gene expression data. Many methods from this family have been recently published, often including new signature matrices appropriate for a single purpose, such as investigating a specific type of tumor. The package ADAPTS helps users make the most of this expanding knowledge base by introducing a framework for cell type deconvolution. ADAPTS implements modular tools for customizing signature matrices for new tissue types by adding custom cell types or building new matrices de novo, including from single cell RNAseq data. It includes a common interface to several popular deconvolution algorithms that use a signature matrix to estimate the proportion of cell types present in heterogenous samples. ADAPTS also implements a novel method for clustering cell types into groups that are difficult to distinguish by deconvolution and then re-splitting those clusters using hierarchical deconvolution. We demonstrate that the techniques implemented in ADAPTS improve the ability to reconstruct the cell types present in a single cell RNAseq data set in a blind predictive analysis. ADAPTS is currently available for use in R on CRAN and GitHub.


Asunto(s)
Biología Computacional/métodos , Neoplasias/genética , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/patología , Máquina de Vectores de Soporte , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
20.
Biophys J ; 95(8): 3715-23, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18621837

RESUMEN

In yeast, beta-oxidation of fatty acids (FAs) takes place in the peroxisome, an organelle whose size and number are controlled in response to environmental cues. The expression of genes required for peroxisome assembly and function is controlled by a transcriptional regulatory network that is induced by FAs such as oleate. The core FA-responsive transcriptional network consists of carbon source-sensing transcription factors that regulate key target genes through an overlapping feed-forward network motif (OFFNM). However, a systems-level understanding of the function of this network architecture in regulating dynamic FA-induced gene expression is lacking. The specific role of the OFFNM in regulating the dynamic and cell-population transcriptional response to oleate was investigated using a kinetic model comprised of four core transcription factor genes (ADR1, OAF1, PIP2, and OAF3) and two reporter genes (CTA1 and POT1) that are indicative of peroxisome induction. Simulations of the model suggest that 1), the intrinsic Adr1p-driven feed-forward loop reduces the steady-state expression variability of target genes; 2), the parallel Oaf3p-driven inhibitory feed-forward loop modulates the dynamic response of target genes to a transiently varying oleate concentration; and 3), heterodimerization of Oaf1p and Pip2p does not appear to have a noise-reducing function in the context of oleate-dependent expression of target genes. The OFFNM is highly overrepresented in the yeast regulome, suggesting that the specific functions described for the OFFNM, or other properties of this motif, provide a selective advantage.


Asunto(s)
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Transcripción Genética , Biología Computacional , Simulación por Computador , Dimerización , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Modelos Genéticos , Ácido Oléico/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA