Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Legal Med ; 138(3): 823-831, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38214738

RESUMEN

Synthetic cannabinoids become increasingly popular as a supposedly safe and legal alternative to cannabis. In order to circumvent the German New Psychoactive Substances Law, producers of so-called herbal mixtures rapidly design new substances with structural alterations that are not covered by the law. Acting as full agonists not only at the cannabinoid receptors 1 and 2, synthetic cannabinoids might have not only desired mental but also serious physical adverse effects. However, knowledge of adverse effects of specific substances is sparse and incomplete. This also accounts for 5F-Cumyl-PEGACLONE, a synthetic cannabinoid, which has been detected regularly in Germany in recent years. By using an animal model, the isolated perfused Langendorff heart, the study at hand aimed on finding out more about possible cardiovascular adverse effects of 5F-Cumyl-PEGACLONE. Hearts of male Wistar rats, which were excised postmortem, were exposed to two different concentrations of 5F-Cumyl-PEGACLONE: 13 hearts were exposed to 50 ng/ml and 12 hearts were exposed to 100 ng/ml. Thirteen control hearts were merely exposed to an additional amount of buffer solution. Functional parameters heart rate, minimal and maximum left ventricular pressure and coronary flow were documented at pre-defined time points during and after the administration of 5F-Cumyl-PEGACLONE/additional buffer solution. Electrocardiograms (ECGs) were documented throughout the experiments and evaluated afterwards. Kruskal-Wallis analysis was performed for each functional parameter as well as for the duration of the QRS complexes and the duration of RR intervals as derived from the ECGs. Furthermore, a multivariate analysis, comprising all functional and ECG parameters, was performed. Kruskal-Wallis analysis revealed only single significant p-values for QRS duration and minimum left ventricular pressure that did not pass a Bonferroni test. The results of the multivariate approach were also comparably homogeneous, but still the model correctly recognized hearts exposed to 100 ng/ml of 5F-Cumyl-PEGACLONE more often than hearts exposed to the low concentration of 5F-Cumyl-PEGACLONE or additional buffer solution. Evaluation of the ECGs presented single cases of ST depression and QT prolongation. Though certainly not unambiguous, these findings support the assumption that 5F-Cumyl-PEGACLONE can cause severe, if not lethal, cardiac adverse effects like arrhythmias or myocardial infarctions especially if it is consumed in combination with other drugs like alcohol or if the consumer suffers from pre-existing heart diseases.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Masculino , Ratas , Animales , Ratas Wistar , Cannabinoides/análisis
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982530

RESUMEN

Microcirculatory and mitochondrial dysfunction are considered the main mechanisms of septic shock. Studies suggest that statins modulate inflammatory response, microcirculation, and mitochondrial function, possibly through their action on peroxisome proliferator-activated receptor alpha (PPAR-α). The aim of this study was to examine the effects of pravastatin on microcirculation and mitochondrial function in the liver and colon and the role of PPAR-α under septic conditions. This study was performed with the approval of the local animal care and use committee. Forty Wistar rats were randomly divided into 4 groups: sepsis (colon ascendens stent peritonitis, CASP) without treatment as control, sepsis + pravastatin, sepsis + PPAR-α-blocker GW6471, and sepsis + pravastatin + GW6471. Pravastatin (200 µg/kg s.c.) and GW6471 (1 mg/kg) were applied 18 h before CASP-operation. 24 h after initial surgery, a relaparotomy was performed, followed by a 90 min observation period for assessment of microcirculatory oxygenation (µHbO2) of the liver and colon. At the end of the experiments, animals were euthanized, and the colon and liver were harvested. Mitochondrial function was measured in tissue homogenates using oximetry. The ADP/O ratio and respiratory control index (RCI) for complexes I and II were calculated. Reactive oxygen species (ROS) production was assessed using the malondialdehyde (MDA)-Assay. Statistics: two-way analysis of variance (ANOVA) + Tukey's/Dunnett's post hoc test for microcirculatory data, Kruskal-Wallis test + Dunn's post hoc test for all other data. In control septic animals µHbO2 in liver and colon deteriorated over time (µHbO2: -9.8 ± 7.5%* and -7.6 ± 3.3%* vs. baseline, respectively), whereas after pravastatin and pravastatin + GW6471 treatment µHbO2 remained constant (liver: µHbO2 pravastatin: -4.21 ± 11.7%, pravastatin + GW6471: -0.08 ± 10.3%; colon: µHbO2 pravastatin: -0.13 ± 7.6%, pravastatin + GW6471: -3.00 ± 11.24%). In both organs, RCI and ADP/O were similar across all groups. The MDA concentration remained unchanged in all groups. Therefore, we conclude that under septic conditions pravastatin improves microcirculation in the colon and liver, and this seems independent of PPAR-α and without affecting mitochondrial function.


Asunto(s)
Pravastatina , Sepsis , Ratas , Animales , Ratas Wistar , Pravastatina/farmacología , Microcirculación , Especies Reactivas de Oxígeno/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Sepsis/metabolismo , Colon/metabolismo , Mitocondrias , Hígado
3.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203431

RESUMEN

Recent studies observed, despite an anti-hyperlipidaemic effect, a positive impact of fibrates on septic conditions. This study evaluates the effects of gemfibrozil on microcirculatory variables, mitochondrial function, and lipid peroxidation levels with regard to its potential role as an indicator for oxidative stress in the colon and liver under control and septic conditions and dependencies on PPARα-mediated mechanisms of action. With the approval of the local ethics committee, 120 Wistar rats were randomly divided into 12 groups. Sham and septic animals were treated with a vehicle, gemfibrozil (30 and 100 mg/kg BW), GW 6471 (1 mg/kg BW, PPARα inhibitor), or a combination of both drugs. Sepsis was induced via the colon ascendens stent peritonitis (CASP) model. Then, 24 h post sham or CASP surgery, a re-laparotomy was performed. Measures of vital parameters (heart rate (HR), mean arterial pressure (MAP), and microcirculation (µHbO2)) were recorded for 90 min. Mitochondrial respirometry and assessment of lipid peroxidation via a malondialdehyde (MDA) assay were performed on colon and liver tissues. In the untreated sham animals, microcirculation remained stable, while pre-treatment with gemfibrozil showed significant decreases in the microcirculatory oxygenation of the colon. In the CASP animals, µHbO2 levels in the colon and the liver were significantly decreased 90 min after laparotomy. Pre-treatment with gemfibrozil prevented the microcirculatory aberrations in both organs. Gemfibrozil did not affect mitochondrial function and lipid peroxidation levels in the sham or CASP animals. Gemfibrozil treatment influences microcirculation depending on the underlying condition. Gemfibrozil prevents sepsis-induced microcirculatory aberrances in the colon and liver PPARα-independently. In non-septic animals, gemfibrozil impairs the microcirculatory variables in the colon without affecting those in the liver.


Asunto(s)
Enfermedades Transmisibles , Enfermedades Gastrointestinales , Peritonitis , Sepsis , Ratas , Animales , Gemfibrozilo/farmacología , Microcirculación , PPAR alfa , Ratas Wistar , Hígado , Peritonitis/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Mitocondrias , Colon
4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498885

RESUMEN

The adverse impact of common diseases like diabetes mellitus and acute hyperglycemia on morbidity and mortality from myocardial infarction (MI) has been well documented over the past years of research. In the clinical setting, the relationship between blood glucose and mortality appears linear, with amplifying risk associated with increasing blood glucose levels. Further, this seems to be independent of a diagnosis of diabetes. In the experimental setting, various comorbidities seem to impact ischemic and pharmacological conditioning strategies, protecting the heart against ischemia and reperfusion injury. In this translational experimental approach from bedside to bench, we set out to determine whether acute and/or prolonged hyperglycemia have an influence on the protective effect of transferred human RIPC-plasma and, therefore, might obstruct translation into the clinical setting. Control and RIPC plasma of young healthy men were transferred to isolated hearts of young male Wistar rats in vitro. Plasma was administered before global ischemia under either short hyperglycemic (HGs Con, HGs RIPC) conditions, prolonged hyperglycemia (HGl Con, HGl RIPC), or under normoglycemia (Con, RIPC). Infarct sizes were determined by TTC staining. Control hearts showed an infarct size of 55 ± 7%. Preconditioning with transferred RIPC plasma under normoglycemia significantly reduced infarct size to 25 ± 4% (p < 0.05 vs. Con). Under acute hyperglycemia, control hearts showed an infarct size of 63 ± 5%. Applying RIPC plasma under short hyperglycemic conditions led to a significant infarct size reduction of 41 ± 4% (p < 0.05 vs. HGs Con). However, the cardioprotective effect of RIPC plasma under normoglycemia was significantly stronger compared with acute hyperglycemic conditions (RIPC vs. HGs RIPC; p < 0.05). Prolonged hyperglycemia (HGl RIPC) completely abolished the cardioprotective effect of RIPC plasma (infarct size 60 ± 7%; p < 0.05 vs. HGl Con; HGl Con 59 ± 5%).


Asunto(s)
Hiperglucemia , Precondicionamiento Isquémico Miocárdico , Precondicionamiento Isquémico , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratas , Animales , Masculino , Humanos , Daño por Reperfusión Miocárdica/prevención & control , Glucemia , Ratas Wistar , Infarto del Miocardio/prevención & control , Hiperglucemia/complicaciones
5.
Anesth Analg ; 132(1): 253-260, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32889843

RESUMEN

BACKGROUND: Cardioprotective interventions-such as pharmacological postconditioning-are a promising strategy to reduce deleterious consequences of ischemia and reperfusion injury (I/RI) in the heart, especially as timing and onset of myocardial infarction are unpredictable. Pharmacological postconditioning by treatment with dexmedetomidine (Dex), an α2-adrenoreceptor agonist, during reperfusion protects hearts from I/RI, independently of time point and duration of application during the reperfusion phase. The mitochondrial ATP-sensitive K (mKATP) and mitochondrial large-conductance calcium-sensitive potassium channel (mBKCa) play a pivotal role in mediating this cardioprotective effect. Therefore, we investigated whether Dex-induced cardioprotection during early or late reperfusion is mediated variously by these mitochondrial K-channels. METHODS: Hearts of male Wistar rats were randomized into 8 groups and underwent a protocol of 15 minutes adaption, 33 minutes ischemia, and 60 minutes reperfusion in an in vitro Langendorff-system. A 10-minute treatment phase was started directly (first subgroup, early reperfusion) or 30 minutes (second subgroup, late reperfusion) after the onset of reperfusion. Control (Con) hearts received vehicle only. In the first subgroup, hearts were treated with 3 nM Dex, 100 µM mKATP-channel blocker 5-hydroxydecanoate (5HD) or 1 µM mBKCa-channel blocker Paxilline (Pax) alone or with respective combinations (5HD + Dex, Pax + Dex). Hearts of the second subgroup received Dex alone (Dex30') or in combination with the respective blockers (5HD + Dex30', Pax + Dex30'). Infarct size was determined with triphenyltetrazoliumchloride staining. Hemodynamic variables were recorded during the whole experiment. RESULTS: During early reperfusion (first subgroup), the infarct size reducing effect of Dex (Con: 57% ± 9%, Dex: 31% ± 7%; P< .0001 versus Con) was completely abolished by 5HD and Pax (52% ± 6%; Pax + Dex: 53% ± 4%; each P< .0001 versus Dex), while both blockers alone had no effect on infarct size (5HD: 54% ± 8%, Pax: 53% ± 11%). During late reperfusion (second subgroup) the protective effect of Dex (Dex30': 33% ± 10%, P< .0001 versus Con) was fully abrogated by Pax (Pax + Dex30': 58% ± 7%, P < .0001 versus Dex30'), whereas 5HD did not block cardioprotection (5HD + Dex30': 36% ± 7%). Between groups and within each group throughout reperfusion no significant differences in hemodynamic variables were detected. CONCLUSIONS: Cardioprotection by treatment with Dex during early reperfusion seems to be mediated by both mitochondrial K-channels, whereas during late reperfusion only mBKCa-channels are involved.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Cardiotónicos/uso terapéutico , Dexmedetomidina/uso terapéutico , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Canales de Potasio/agonistas , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Cardiotónicos/farmacología , Dexmedetomidina/farmacología , Masculino , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Canales de Potasio/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar
6.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926009

RESUMEN

Prognosis of patients with myocardial infarction is detrimentally affected by comorbidities like diabetes mellitus. In the experimental setting, not only diabetes mellitus but also acute hyperglycemia is shown to hamper cardioprotective properties by multiple pharmacological agents. For Levosimendan-induced postconditioning, a strong infarct size reducing effect is demonstrated in healthy myocardium. However, acute hyperglycemia is suggested to block this protective effect. In the present study, we investigated whether (1) Levosimendan-induced postconditioning exerts a concentration-dependent effect under hyperglycemic conditions and (2) whether a combination with the mitochondrial permeability transition pore (mPTP) blocker cyclosporine A (CsA) restores the cardioprotective properties of Levosimendan under hyperglycemia. For this experimental investigation, hearts of male Wistar rats were randomized and mounted onto a Langendorff system, perfused with Krebs-Henseleit buffer with a constant pressure of 80 mmHg. All isolated hearts were subjected to 33 min of global ischemia and 60 min of reperfusion under hyperglycemic conditions. (1) Hearts were perfused with various concentrations of Levosimendan (Lev) (0.3-10 µM) for 10 min at the onset of reperfusion, in order to investigate a concentration-response relationship. In the second set of experiments (2), 0.3 µM Levosimendan was administered in combination with the mPTP blocker CsA, to elucidate the underlying mechanism of blocked cardioprotection under hyperglycemia. Infarct size was determined by tetrazolium chloride (TTC) staining. (1) Control (Con) hearts showed an infarct size of 52 ± 12%. None of the administered Levosimendan concentrations reduced the infarct size (Lev0.3: 49 ± 9%; Lev1: 57 ± 9%; Lev3: 47 ± 11%; Lev10: 50 ± 7%; all ns vs. Con). (2) Infarct size of Con and Lev0.3 hearts were 53 ± 4% and 56 ± 2%, respectively. CsA alone had no effect on infarct size (CsA: 50 ± 10%; ns vs. Con). The combination of Lev0.3 and CsA (Lev0.3 ± CsA) induced a significant infarct size reduction compared to Lev0.3 (Lev0.3+CsA: 35 ± 4%; p < 0.05 vs. Lev0.3). We demonstrated that (1) hyperglycemia blocks the infarct size reducing effects of Levosimendan-induced postconditioning and cannot be overcome by an increased concentration. (2) Furthermore, cardioprotection under hyperglycemia can be restored by combining Levosimendan and the mPTP blocker CsA.


Asunto(s)
Ciclosporina/farmacología , Hiperglucemia/tratamiento farmacológico , Simendán/farmacología , Animales , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Corazón/fisiología , Hiperglucemia/complicaciones , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Ratas , Ratas Wistar
7.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445586

RESUMEN

Remote ischemic preconditioning (RIPC) protects hearts from ischemia-reperfusion (I/R) injury in experimental studies; however, clinical RIPC trials were unsatisfactory. This discrepancy could be caused by a loss of cardioprotection due to comorbidities in patients, including diabetes mellitus (DM) and hyperglycemia (HG). RIPC is discussed to confer protective properties by release of different humoral factors activating cardioprotective signaling cascades. Therefore, we investigated whether DM type 1 and/or HG (1) inhibit the release of humoral factors after RIPC and/or (2) block the cardioprotective effect directly at the myocardium. Experiments were performed on male Wistar rats. Animals in part 1 of the study were either healthy normoglycemic (NG), type 1 diabetic (DM1), or hyperglycemic (HG). RIPC was implemented by four cycles of 5 min bilateral hind-limb ischemia/reperfusion. Control (Con) animals were not treated. Blood plasma taken in vivo was further investigated in isolated rat hearts in vitro. Plasma from diseased animals (DM1 or HG) was administered onto healthy (NG) hearts for 10 min before 33 min of global ischemia and 60 min of reperfusion. Part 2 of the study was performed vice versa-plasma taken in vivo, with or without RIPC, from healthy rats was transferred to DM1 and HG hearts in vitro. Infarct size was determined by TTC staining. Part 1: RIPC plasma from NG (NG Con: 49 ± 8% vs. NG RIPC 29 ± 6%; p < 0.05) and DM1 animals (DM1 Con: 47 ± 7% vs. DM1 RIPC: 38 ± 7%; p < 0.05) reduced infarct size. Interestingly, transfer of HG plasma showed comparable infarct sizes independent of prior treatment (HG Con: 34 ± 9% vs. HG RIPC 35 ± 9%; ns). Part 2: No infarct size reduction was detectable when transferring RIPC plasma from healthy rats to DM1 (DM1 Con: 54 ± 13% vs. DM1 RIPC 53 ± 10%; ns) or HG hearts (HG Con: 60 ± 16% vs. HG RIPC 53 ± 14%; ns). These results suggest that: (1) RIPC under NG and DM1 induces the release of humoral factors with cardioprotective impact, (2) HG plasma might own cardioprotective properties, and (3) RIPC does not confer cardioprotection in DM1 and HG myocardium.


Asunto(s)
Cardiotónicos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Hiperglucemia/complicaciones , Inmunidad Humoral , Precondicionamiento Isquémico Miocárdico/métodos , Daño por Reperfusión Miocárdica/prevención & control , Animales , Masculino , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Wistar , Transducción de Señal
8.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830353

RESUMEN

The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG-as possible targets of known protective signaling cascades-are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/genética , Manitol/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Receptor de Adenosina A1/genética , Daño por Reperfusión/tratamiento farmacológico , Animales , Carbazoles/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Corazón/efectos de los fármacos , Corazón/fisiopatología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Precondicionamiento Isquémico Miocárdico , Canales KATP/antagonistas & inhibidores , Riñón/efectos de los fármacos , Riñón/patología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico Sintasa de Tipo III/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Receptor de Adenosina A1/efectos de los fármacos , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos , Xantinas/farmacología
9.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673646

RESUMEN

Cardiac preconditioning (PC) and postconditioning (PoC) are powerful measures against the consequences of myocardial ischemia and reperfusion (I/R) injury. Mannitol-a hyperosmolar solution-is clinically used for treatment of intracranial and intraocular pressure or promotion of diuresis in renal failure. Next to these clinical indications, different organ-protective properties-e.g., perioperative neuroprotection-are described. However, whether Mannitol also confers cardioprotection via a pre- and/or postconditioning stimulus, possibly reducing consequences of I/R injury, remains to be seen. Therefore, in the present study we investigated whether (1) Mannitol-induced pre- and/or postconditioning induces myocardial infarct size reduction and (2) activation of mitochondrial ATP-sensitive potassium (mKATP) channels is involved in cardioprotection by Mannitol. Experiments were performed on isolated hearts of male Wistar rats via a pressure controlled Langendorff system, randomized into 7 groups. Each heart underwent 33 min of global ischemia and 60 min of reperfusion. Control hearts (Con) received Krebs-Henseleit buffer as vehicle only. Pre- and postconditioning was achieved by administration of 11 mmol/L Mannitol for 10 min before ischemia (Man-PC) or immediately at the onset of reperfusion (Man-PoC), respectively. In further groups, the mKATP channel blocker 5HD, was applied with and without Mannitol, to determine the potential underlying cardioprotective mechanisms. Primary endpoint was infarct size, determined by triphenyltetrazolium chloride staining. Mannitol significantly reduced infarct size both as a pre- (Man-PC) and postconditioning (Man-PoC) stimulus compared to control hearts (Man-PC: 31 ± 4%; Man-PoC: 35 ± 6%, each p < 0.05 vs. Con: 57 ± 9%). The mKATP channel inhibitor completely abrogated the cardioprotective effect of Mannitol-induced pre- (5HD-PC-Man-PC: 59 ± 8%, p < 0.05 vs. Man-PC) and postconditioning (5HD-PoC-Man-PoC: 59 ± 10% vs. p < 0.05 Man-PoC). Infarct size was not influenced by 5HD itself (5HD-PC: 60 ± 14%; 5HD-PoC: 54 ± 14%, each ns vs. Con). This study demonstrates that Mannitol (1) induces myocardial pre- and postconditioning and (2) confers cardioprotection via activation of mKATP channels.


Asunto(s)
Cardiotónicos , Precondicionamiento Isquémico Miocárdico , Manitol , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Canales de Potasio , Animales , Masculino , Ratas , Cardiotónicos/farmacología , Diuréticos Osmóticos/farmacología , Precondicionamiento Isquémico Miocárdico/métodos , Manitol/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Canales de Potasio/metabolismo , Distribución Aleatoria , Ratas Wistar
10.
J Cardiovasc Pharmacol ; 76(6): 684-691, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33002964

RESUMEN

Ischemic preconditioning and postconditioning are strong measures preserving the heart against ischemia-reperfusion injury in experimental setting but are too invasive and impractical for clinical routine. The cardioprotective effects of ischemic preconditioning and postconditioning can be imitated pharmacologically, for example, with the phosphodiesterase inhibitors sildenafil and milrinone. We hypothesize that sildenafil-induced preconditioning is concentration dependent and further that a combined treatment of "nonprotective" versus "protective" concentrations of sildenafil and milrinone leads to a significant infarct size reduction. Experiments were performed on isolated hearts of male Wistar rats, randomized into 12 groups, mounted onto a Langendorff system, and perfused with Krebs-Henseleit buffer. All hearts underwent 33 minutes ischemia and 60 minutes of reperfusion. For determination of a concentration-dependent effect of sildenafil, hearts were perfused with increasing concentrations of sildenafil (0.1-1 µM) over 10 minutes before ischemia. In a second series of experiments, hearts were treated with 0.3 µM sildenafil or 1 µM milrinone as the "protective" concentrations. A higher concentration of respective drugs did not further reduce infarct size. In addition, a combination of "protective" and "nonprotective" concentrations of sildenafil and milrinone was applied. Sildenafil and milrinone in lower concentrations led to significant infarct size reduction, whereas combining both substances in cardioprotective concentrations did not enhance this effect. Sildenafil in a concentration of 0.3 µM induces myocardial protection. Furthermore, treatment with sildenafil and milrinone in lower concentrations had an equally strong cardioprotective effect regarding infarct size reduction compared with the administration of "protective" concentrations.


Asunto(s)
Milrinona/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/patología , Inhibidores de Fosfodiesterasa 3/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Hemodinámica/efectos de los fármacos , Preparación de Corazón Aislado , Masculino , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas Wistar , Función Ventricular Izquierda/efectos de los fármacos
11.
Mol Biol Rep ; 47(9): 6669-6677, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32789575

RESUMEN

Isoflurane (Iso) preconditioning (PC) is known to be cardioprotective against ischemia/reperfusion (I/R) injury. It was previously shown that microRNA-21-5p (miR-21-5p) is regulated by Iso-PC. It is unclear, if expression of cardiac enriched miR-1-3p is also affected by Iso-PC, and associated with activation of HIF1α (hypoxia-inducible factor 1-alpha).  Male Wistar rats (n = 6-8) were randomly assigned to treatment with or without 1 MAC Iso for 30 min, followed by 25 min of regional myocardial ischemia, with 120 min reperfusion. At the end of reperfusion, myocardial expression of miR-1-3p, miR-21-5p and mRNAs of two HIF-1α-dependent genes, VEGF (vascular endothelial growth factor) and HO-1 (heme oxygenase-1), were determined by quantitative PCR. Protein expression of a miR-21 target gene, PDCD4 (programmed cell death protein 4), was assessed by western blot analysis. Infarct sizes were analyzed with triphenyltetrazoliumchloride staining. MiR-21-5p expression was increased by Iso, whereas expression of miR-1-3p was not altered. The expression of VEGF but not HO-1 was induced by Iso. Iso-PC reduced infarct sizes compared to untreated controls. No regulation of miRNA and mRNA expression was detected after I/R. PDCD4 protein expression was not affected after Iso exposure. Expression of miR-21-5p, in contrast to miR-1-3p, is altered during this early time point of Iso-PC. HIF1α signaling seems to be involved in miR-21-5p regulation.


Asunto(s)
Isoflurano/farmacología , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Precondicionamiento Isquémico , Isoflurano/análogos & derivados , Masculino , MicroARNs/genética , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Cardiovasc Drugs Ther ; 34(3): 303-310, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32236860

RESUMEN

PURPOSE: The melatonin receptor (MT) agonist ramelteon has a higher affinity to MT1 than for MT2 receptors and induces cardioprotection by involvement of mitochondrial potassium channels. Activation of mitochondrial potassium channels leads to release of free radicals. We investigated whether (1) ramelteon-induced cardioprotection is MT2 receptor specific and (2) if free radicals are involved in ramelteon-induced cardioprotection. METHODS: Hearts of male Wistar rats were randomized, placed on a Langendorff system, and perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia hearts were perfused with ramelteon (Ram) with or without the MT2 receptor inhibitor 4-phenyl-2-propionamidotetralin (4P-PDOT+Ram, 4P-PDOT). In subsequent experiments, ramelteon was administered together with the radical oxygen species (ROS) scavenger N-2-mercaptopropionylglycine (MPG+Ram). To determine whether the blockade of ramelteon-induced cardioprotection can be restored, we combined ramelteon and MPG with mitochondrial permeability transition pore (mPTP) inhibitor cyclosporine A (CsA) at different time points. Infarct size was determined by triphenyltetrazolium chloride (TTC) staining. RESULTS: Ramelteon-induced infarct size reduction was completely blocked by 4P-PDOT and MPG. Ramelteon and MPG combined with CsA before ischemia were not cardioprotective but CsA at the onset of reperfusion could restore infarct size reduction. CONCLUSIONS: This study shows for the first time that despite the higher affinity to MT1 receptors, (1) ramelteon-induced cardioprotection involves MT2 receptors, (2) cardioprotection requires ROS release, and (3) inhibition of the mPTP can restore infarct size reduction.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Indenos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptor de Melatonina MT2/agonistas , Animales , Modelos Animales de Enfermedad , Preparación de Corazón Aislado , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Wistar , Receptor de Melatonina MT2/metabolismo , Transducción de Señal , Función Ventricular Izquierda/efectos de los fármacos
13.
Anesth Analg ; 131(6): 1765-1780, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186163

RESUMEN

Cardioprotection encompasses a variety of strategies protecting the heart against myocardial injury that occurs during and after inadequate blood supply to the heart during myocardial infarction. While restoring reperfusion is crucial for salvaging myocardium from further damage, paradoxically, it itself accounts for additional cell death-a phenomenon named ischemia/reperfusion injury. Therefore, therapeutic strategies are necessary to render the heart protected against myocardial infarction. Ischemic pre- and postconditioning, by short periods of sublethal cardiac ischemia and reperfusion, are still the strongest mechanisms to achieve cardioprotection. However, it is highly impractical and far too invasive for clinical use. Fortunately, it can be mimicked pharmacologically, for example, by volatile anesthetics, noble gases, opioids, propofol, dexmedetomidine, and phosphodiesterase inhibitors. These substances are all routinely used in the clinical setting and seem promising candidates for successful translation of cardioprotection from experimental protocols to clinical trials. This review presents the fundamental mechanisms of conditioning strategies and provides an overview of the most recent and relevant findings on different concepts achieving cardioprotection in the experimental setting, specifically emphasizing pharmacological approaches in the perioperative context.


Asunto(s)
Cardiotónicos/administración & dosificación , Precondicionamiento Isquémico Miocárdico/métodos , Daño por Reperfusión Miocárdica/prevención & control , Atención Perioperativa/métodos , Complicaciones Posoperatorias/prevención & control , Analgésicos Opioides/administración & dosificación , Humanos , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/fisiopatología , Inhibidores de Fosfodiesterasa 3/administración & dosificación , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/fisiopatología
14.
Anesth Analg ; 130(1): 90-98, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633505

RESUMEN

BACKGROUND: Timing and onset of myocardial ischemia are mostly unpredictable. Therefore, postconditioning could be an effective cardioprotective intervention. Because ischemic postconditioning is an invasive and not practicable treatment, pharmacological postconditioning would be a more suitable alternative cardioprotective measure. For the α2-adrenoreceptor agonist, dexmedetomidine postconditioning has been shown. However, data on a concentration-dependent effect of dexmedetomidine are lacking. Furthermore, it is unclear whether the time point and/or duration of dexmedetomidine administration in the reperfusion period is of relevance. We set out to determine whether infarct size reduction by dexmedetomidine is concentration dependent and whether time point and/or duration of dexmedetomidine application has an impact on the effect size of cardio protection. METHODS: Hearts of male Wistar rats were randomized and placed on a Langendorff system perfused with Krebs-Henseleit buffer at a constant pressure of 80 mm Hg. All hearts were subjected to 33 minutes of global ischemia and 60 minutes of reperfusion. In part I of the study, a concentration-response effect was determined by perfusing hearts with various concentrations of dexmedetomidine (0.3-100 nM) at the onset of reperfusion. Based on these results, part II of the study was conducted with 3 nM dexmedetomidine. Application of dexmedetomidine started directly at the onset of reperfusion (Dex60) and 15 minutes (Dex15), 30 minutes (Dex30), or 45 minutes (Dex45) after the start of reperfusion and lasted always until the end of the reperfusion period. Infarct size was determined by triphenyltetrazolium chloride staining. RESULTS: In part I, infarct size in control (Con) hearts was 62% ± 4%. Three-nanometer dexmedetomidine was the lowest most effective cardioprotective concentration and reduced infarct size to 24% ± 7% (P < .0001 versus Con). Higher concentrations did not confer stronger protection. Infarct size in control hearts from part II was 66% ± 6%. Different starting times and/or durations of application resulted in similar infarct size reduction (all P < .0001 versus Con). CONCLUSIONS: Postconditioning by dexmedetomidine is concentration dependent in ranges between 0.3 and 3 nM. Increased concentrations above 3 nM do not further enhance this cardioprotective effect. This cardioprotective effect is independent of time point and length of application in the reperfusion period.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Dexmedetomidina/administración & dosificación , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Preparación de Corazón Aislado , Masculino , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Ratas Wistar , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
15.
Mol Ther ; 27(1): 46-58, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30528085

RESUMEN

Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r-/- mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Células Mieloides/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Animales , Ecocardiografía , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
16.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276406

RESUMEN

Ramelteon is a Melatonin 1 (MT1)-and Melatonin 2 (MT2)-receptor agonist conferring cardioprotection by pharmacologic preconditioning. While activation of mitochondrial calcium-sensitive potassium (mKCa)-channels is involved in this protective mechanism, the specific upstream signaling pathway of Ramelteon-induced cardioprotection is unknown. In the present study, we (1) investigated whether Ramelteon-induced cardioprotection involves activation of protein kinase G (PKG) and/or protein kinase B (Akt) and (2) determined the precise sequence of PKG and Akt in the signal transduction pathway of Ramelteon-induced preconditioning. Hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with Ramelteon (Ram) with or without the PKG or Akt inhibitor KT5823 and MK2206, respectively (KT5823 + Ram, KT5823, MK2206 + Ram, MK2206). To determine the precise signaling sequence, subsequent experiments were conducted with the guanylate cyclase activator BAY60-2770 and the mKCa-channel activator NS1619. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Ramelteon-induced infarct size reduction was completely blocked by KT5823 (p = 0.0012) and MK2206 (p = 0.0005). MK2206 with Ramelteon combined with BAY60-2770 reduced infarct size significantly (p = 0.0014) indicating that PKG activation takes place after Akt. Ramelteon and KT5823 (p = 0.0063) or MK2206 (p = 0.006) respectively combined with NS1619 also significantly reduced infarct size, indicating that PKG and Akt are located upstream of mKCa-channels. This study shows for the first time that Ramelteon-induced preconditioning (1) involves activation of PKG and Akt; (2) PKG is located downstream of Akt and (3) both enzymes are located upstream of mKCa-channels in the signal transduction pathway.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Corazón/efectos de los fármacos , Indenos/farmacología , Precondicionamiento Isquémico Miocárdico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Cardiotónicos/farmacología , Masculino , Infarto del Miocardio , Miocardio/metabolismo , Ratas , Ratas Wistar , Transducción de Señal
17.
Crit Care Med ; 47(3): e250-e255, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30608281

RESUMEN

OBJECTIVES: Remote ischemic preconditioning (RIPC) is a practicable and noninvasive method to protect the heart against ischemia reperfusion injury. Unfortunately results from clinical studies are not convincing. Propofol is suggested to be an inhibiting factor of cardioprotection by RIPC, but the underlying mechanism is still unknown. We investigated whether after RIPC the release of humoral factors and/or the direct cardioprotective effect at the myocardium is inhibited by propofol. DESIGN: Randomized, prospective, blinded laboratory investigation. SETTING: Experimental laboratory. PATIENTS/SUBJECTS: Male Wistar rats. INTERVENTIONS: Repetitive hind limb ischemia in rats-blood plasma transfers to isolated rat heart. MEASUREMENTS AND MAIN RESULTS: In male Wistar rats (six groups, each n = 6/group), RIPC was induced by four cycles of 5 minutes bilateral hind limb ischemia alternately with 5 minutes of reperfusion. Blood samples were taken with (RIPC) and without RIPC (Con). Rats received continuous anesthesia with pentobarbital (Pento, 40 mg/kg body weight/hr) or propofol (Prop, 12 mg/kg body weight/hr), respectively. Cardioprotective properties of the blood plasma was investigated in the rat heart in vitro (six groups, each n = 6/group) perfused with Krebs-Henseleit buffer alone or with propofol (10 µM). Plasma was administered over 10 minutes before myocardial ischemia. All hearts underwent 33 minutes of global ischemia followed by 1 hour of reperfusion. At the end of the experiments, infarct size was determined by triphenyl-tetrazolium-chloride staining. RIPC plasma from pentobarbital anesthetized rats (Pento-RIPC) reduced infarct size from 64% (62-71%) (Pento-Con) to 34% (30-39%) (p < 0.0001). Infarct size with control plasma from propofol anesthetized rats was 59% (58-64%) (Prop-Con). RIPC plasma could not induce cardioprotection (Prop-RIPC: 63% [56-70%] ns vs Prop-Con). In contrast, RIPC plasma from pentobarbital anesthetized rats induced a significant infarct size reduction under propofol perfusion (Pento-RIPC: 34% [30-42%] vs Pento-Con: 54% [53-63%]; p < 0.0001). CONCLUSIONS: Loss of cardioprotection by RIPC during propofol anesthesia depends on inhibition of release of humoral factors.


Asunto(s)
Anestésicos Intravenosos/efectos adversos , Precondicionamiento Isquémico , Daño por Reperfusión Miocárdica/prevención & control , Propofol/efectos adversos , Anestesia/efectos adversos , Animales , Hemodinámica , Miembro Posterior/irrigación sanguínea , Precondicionamiento Isquémico/métodos , Masculino , Daño por Reperfusión Miocárdica/sangre , Distribución Aleatoria , Ratas , Ratas Wistar
18.
Cardiovasc Drugs Ther ; 33(5): 581-588, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31705225

RESUMEN

PURPOSE: Small and big conductance Ca2+-sensitive potassium (KCa) channels are involved in cardioprotective measures aiming at reducing myocardial reperfusion injury. For levosimendan, infarct size-reducing effects were shown. Whether activation of these channels is involved in levosimendan-induced postconditioning is unknown. We hypothesized that levosimendan exerts a concentration-dependent cardioprotective effect and that both types of Ca2+-sensitive potassium channels are involved. METHODS: In a prospective blinded experimental laboratory investigation, hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. At the onset of reperfusion, hearts were perfused with various concentrations of levosimendan (0.03-1 µM) in order to determine a concentration-response relationship. To elucidate the involvement of KCa-channels for the observed cardioprotection, in the second set of experiments, 0.3 µM levosimendan was administered in combination with the subtype-specific KCa-channel inhibitors paxilline (1 µM, big KCa-channel) and NS8593 (0.1 µM, small KCa-channel) respectively. Infarct size was determined by tetrazolium chloride (TTC) staining. RESULTS: Infarct size in controls was 60 ± 7% and 59 ± 6% respectively. Levosimendan at a concentration of 0.3 µM reduced infarct size to 30 ± 5% (P < 0.0001 vs. control). Higher concentrations of levosimendan did not induce a stronger effect. Paxilline but not NS8593 completely abolished levosimendan-induced cardioprotection while both substances alone had no effect on infarct size. CONCLUSIONS: Cardioprotection by levosimendan-induced postconditioning shows a binary phenomenon, either ineffective or with maximal effect. The cardioprotective effect requires activation of big but not small KCa channels.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Precondicionamiento Isquémico Miocárdico , Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Simendán/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Preparación de Corazón Aislado , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas Wistar , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
19.
J Cardiovasc Pharmacol ; 72(2): 106-111, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29787401

RESUMEN

Activation of melatonin receptors induces cardioprotection. Mitochondrial potassium channels (mKCa and mKATP) are involved in the signaling cascade of preconditioning. The melatonin receptor agonist ramelteon is an approved oral medication for treatment of insomnia, but nothing is known about possible cardioprotective properties. We investigated whether (1) ramelteon induces cardioprotection mediated by the melatonin receptor; (2) this effect is concentration-dependent; and (3) mKCa and/or mKATP channels are critically involved in ramelteon-induced cardioprotection. Hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mm Hg. All hearts were subjected to 33 minutes of global ischemia and 60 minutes of reperfusion. Before, ischemic hearts were perfused with different concentrations of ramelteon (0.01-5 µM) for determination of a concentration-effect curve. In subsequent experiments, the lowest protective concentration of ramelteon was administered together with paxilline (mKCa channel inhibitor) and 5-hydroxydecanoate (mKATP channel inhibitor). To determine whether the reduction of ischemia and reperfusion injury by ramelteon is mediated by melatonin receptor, we combined ramelteon with luzindole, a melatonin receptor antagonist. Infarct size was determined by triphenyltetrazolium chloride staining. In control animals, infarct size was 58% ± 6%. Ramelteon in a concentration of 0.03 µM reduced infarct size to 28% ± 4% (P < 0.0001 vs. Con). A lower concentration of ramelteon did not initiate cardioprotection, and higher concentrations did not further decrease infarct size. Paxilline, 5-hydroxydecanoate, and luzindole completely blocked the ramelteon-induced cardioprotection. This study shows for the first time that (1) ramelteon induces cardioprotection through melatonin receptor; (2) the effect is not concentration-dependent; and (3) activation of mKCa and mKATP channels is involved.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Indenos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Canales de Potasio Calcio-Activados/agonistas , Canales de Potasio/agonistas , Receptores de Melatonina/agonistas , Animales , Hemodinámica/efectos de los fármacos , Preparación de Corazón Aislado , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Canales de Potasio/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Ratas Wistar , Receptores de Melatonina/metabolismo , Transducción de Señal/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
20.
Cardiovasc Drugs Ther ; 32(5): 427-434, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30120617

RESUMEN

PURPOSE: Activation of mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa)-channels is a crucial step for cardioprotection by preconditioning. Whether activation of these channels is involved in levosimendan-induced preconditioning is unknown. We investigated if cardioprotection by levosimendan requires activation of mBKCa-channels in the rat heart in vitro. METHODS: In a prospective blinded experimental laboratory investigation, hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with different concentrations of levosimendan (0.03-1 µM) for determination of a dose-effect curve. In a second set of experiments, 0.3 µM levosimendan was administered in combination with the mBKCa-channel inhibitor paxilline (1 µM). Infarct size was determined by TTC staining. RESULTS: In control, animal's infarct size was 58 ± 7%. Levosimendan at a concentration of 0.3 µM reduced infarct size to 30 ± 7% (P < 0.05 vs. control). Higher concentrations with 1 µM levosimendan did not confer stronger protection. Paxilline completely blocked levosimendan-induced cardioprotection while paxilline alone had no effect on infarct size. CONCLUSIONS: This study shows that activation of mBKCa-channels plays a pivotal role in levosimendan-induced preconditioning.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Mitocondrias Cardíacas/efectos de los fármacos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Simendán/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Indoles/farmacología , Preparación de Corazón Aislado , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Bloqueadores de los Canales de Potasio/farmacología , Ratas Wistar , Función Ventricular Izquierda/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA