Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; 43(4): 594-612, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35369831

RESUMEN

Cassava (Manihot esculenta) is a major staple food and the world's fourth source of calories. Biotechnological contributions to enhancing this crop, its advances, and present issues must be assessed regularly. Functional genomics, genomic-assisted breeding, molecular tools, and genome editing technologies, among other biotechnological approaches, have helped improve the potential of economically important crops like cassava by addressing some of its significant constraints, such as nutrient deficiency, toxicity, poor starch quality, disease susceptibility, low yield capacity, and postharvest deterioration. However, the development, improvement, and subsequent acceptance of the improved cultivars have been challenging and have required holistic approaches to solving them. This article provides an update of trends and gaps in cassava biotechnology, reviewing the relevant strategies used to improve cassava crops and highlighting the potential risk and acceptability of improved cultivars in Southern Africa.


Asunto(s)
Manihot , Manihot/genética , Biotecnología , África Austral , Verduras , Productos Agrícolas/genética
2.
Front Plant Sci ; 14: 1166813, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377801

RESUMEN

Stem rust caused by the pathogen Puccinia graminis f. sp. tritici is a destructive fungal disease-causing major grain yield losses in wheat. Therefore, understanding the plant defence regulation and function in response to the pathogen attack is required. As such, an untargeted LC-MS-based metabolomics approach was employed as a tool to dissect and understand the biochemical responses of Koonap (resistant) and Morocco (susceptible) wheat varieties infected with two different races of P. graminis (2SA88 [TTKSF] and 2SA107 [PTKST]). Data was generated from the infected and non-infected control plants harvested at 14- and 21- days post-inoculation (dpi), with 3 biological replicates per sample under a controlled environment. Chemo-metric tools such as principal component analysis (PCA), orthogonal projection to latent structures-discriminant analysis (OPLS-DA) were used to highlight the metabolic changes using LC-MS data of the methanolic extracts generated from the two wheat varieties. Molecular networking in Global Natural Product Social (GNPS) was further used to analyse biological networks between the perturbed metabolites. PCA and OPLS-DA analysis showed cluster separations between the varieties, infection races and the time-points. Distinct biochemical changes were also observed between the races and time-points. Metabolites were identified and classified using base peak intensities (BPI) and single ion extracted chromatograms from samples, and the most affected metabolites included flavonoids, carboxylic acids and alkaloids. Network analysis also showed high expression of metabolites from thiamine and glyoxylate, such as flavonoid glycosides, suggesting multi-faceted defence response strategy by understudied wheat varieties towards P. graminis pathogen infection. Overall, the study provided the insights of the biochemical changes in the expression of wheat metabolites in response to stem rust infection.

3.
Front Genet ; 14: 1141201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007949

RESUMEN

The causal agent of rust, Uromyces appendiculatus is a major constraint for common bean (Phaseolus vulgaris) production. This pathogen causes substantial yield losses in many common bean production areas worldwide. U. appendiculatus is widely distributed and although there have been numerous breakthroughs in breeding for resistance, its ability to mutate and evolve still poses a major threat to common bean production. An understanding of plant phytochemical properties can aid in accelerating breeding for rust resistance. In this study, metabolome profiles of two common bean genotypes Teebus-RR-1 (resistant) and Golden Gate Wax (susceptible) were investigated for their response to U. appendiculatus races (1 and 3) at 14- and 21-days post-infection (dpi) using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-qTOF-MS). Non-targeted data analysis revealed 71 known metabolites that were putatively annotated, and a total of 33 were statistically significant. Key metabolites including flavonoids, terpenoids, alkaloids and lipids were found to be incited by rust infections in both genotypes. Resistant genotype as compared to the susceptible genotype differentially enriched metabolites including aconifine, D-sucrose, galangin, rutarin and others as a defence mechanism against the rust pathogen. The results suggest that timely response to pathogen attack by signalling the production of specific metabolites can be used as a strategy to understand plant defence. This is the first study to illustrate the utilization of metabolomics to understand the interaction of common bean with rust.

4.
Microbiol Resour Announc ; 12(4): e0076322, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36946728

RESUMEN

This study reports a draft genome of a phytopathogenic bacterium, Pectobacterium brasiliense, isolated from potato in South Africa. The total reported length of the genome is 4,897,858 bp, contained in 172 contigs with 4,378 genes. The GC content of the genome is 51.6%.

5.
Plants (Basel) ; 11(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35807708

RESUMEN

Legume crops such as common bean, pea, alfalfa, cowpea, peanut, soybean and others contribute significantly to the diet of both humans and animals. They are also important in the improvement of cropping systems that employ rotation and fix atmospheric nitrogen. Biotic stresses hinder the production of leguminous crops, significantly limiting their yield potential. There is a need to understand the molecular and biochemical mechanisms involved in the response of these crops to biotic stressors. Simultaneous expressions of a number of genes responsible for specific traits of interest in legumes under biotic stress conditions have been reported, often with the functions of the identified genes unknown. Metabolomics can, therefore, be a complementary tool to understand the pathways involved in biotic stress response in legumes. Reports on legume metabolomic studies in response to biotic stress have paved the way in understanding stress-signalling pathways. This review provides a progress update on metabolomic studies of legumes in response to different biotic stresses. Metabolome annotation and data analysis platforms are discussed together with future prospects. The integration of metabolomics with other "omics" tools in breeding programmes can aid greatly in ensuring food security through the production of stress tolerant cultivars.

6.
Microorganisms ; 8(2)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098375

RESUMEN

Fusarium graminearum is a devasting mycotoxin-producing pathogen of grain crops. F. graminearum has been extensively studied to understand its pathogenicity and virulence factors. These studies gained momentum with the advent of next-generation sequencing (NGS) technologies and proteomics. NGS and proteomics have enabled the discovery of a multitude of pathogenicity and virulence factors of F. graminearum. This current review aimed to trace progress made in discovering F. graminearum pathogenicity and virulence factors in general, as well as pathogenicity and virulence factors discovered using NGS, and to some extent, using proteomics. We present more than 100 discovered pathogenicity or virulence factors and conclude that although a multitude of pathogenicity and virulence factors have already been discovered, more work needs to be done to take advantage of NGS and its companion applications of proteomics.

7.
Toxins (Basel) ; 11(10)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635255

RESUMEN

Fusarium graminearum is a pervasive plant pathogenic fungal species. Biological control agents employ various strategies to weaken their targets, as shown by Bacillus species, which adopt various mechanisms, including the production of bioactive compounds, to inhibit the growth of F. graminearum. Various efforts to uncover the antagonistic mechanisms of Bacillus against F. graminearum have been undertaken and have yielded a plethora of data available in the current literature. This perspective article attempts to provide a unified record of these interesting findings. The authors provide background knowledge on the use of Bacillus as a biocontrol agent as well as details on techniques and tools for studying the antagonistic mechanism of Bacillus against F. graminearum. Emphasizing its potential as a future biological control agent with extensive use, the authors encourage future studies on Bacillus as a useful antagonist of F. graminearum and other plant pathogens. It is also recommended to take advantage of the newly invented analytical platforms for studying biochemical processes to understand the mechanism of action of Bacillus against plant pathogens in general.


Asunto(s)
Bacillus , Agentes de Control Biológico , Fusarium/crecimiento & desarrollo , Bacillus/genética , Genes Bacterianos , Lipopéptidos/genética , Péptidos Cíclicos/genética , Enfermedades de las Plantas/prevención & control
8.
PLoS One ; 13(8): e0202541, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30133510

RESUMEN

The mealybug, Phenacoccus manihoti, is a leading pest of cassava (Manihot esculenta Crantz), damaging this crop globally. Although the biological control of this mealybug using natural predators has been established, resistance breeding remains an important means of control. Understanding plant responses to insect herbivory, by determining and identifying differentially expressed genes (DEGs), is a vital step towards the understanding of molecular mechanisms of defence responses in plants and the development of resistant cultivars by gene editing. Morphological and molecular analysis confirmed the mealybug identity as Phenacoccus manihoti (Matile-Ferrero). The transcriptome response of the green mite resistant cassava genotype AR23.1 was compared to P40/1 with no known resistance at 24 and 72 hours of mealybug infestation compared to non-infested mock. A total of 301 and 206 genes were differentially expressed at 24 and 72 of mealybug infestation for AR23.1 and P40/1 genotypes respectively, using a log2 fold change and P-value ≤ 0.05. Gene ontology functional classification revealed an enrichment of genes in the secondary metabolic process category in AR23.1 in comparison with P40/1, while genes in the regulation of molecular function, cellular component biogenesis and electron carrier categories were more significantly enriched in P40/1 than in AR23.1. Biological pathway analysis, based on KEGG, revealed a significant enrichment of plant-pathogen interaction and plant hormonal signal transduction pathways for a cohort of up-regulated and down-regulated DEGs in both genotypes. Defence-related genes such as 2-oxogluterate, gibberellin oxidase and terpene synthase proteins were only induced in genotype AR23.1 and not in P40/1, and subsequently validated by RT-qPCR. The study revealed a difference in response to mealybug infestation in the two genotypes studied, with AR23.1 showing a higher number of differentially expressed transcripts post mealybug infestation at 24 and 72 hours. Candidate defence-related genes that were overexpressed in the AR23.1 genotype post mealybug infestation will be useful in future functional studies towards the control of mealybugs.


Asunto(s)
Resistencia a la Enfermedad/genética , Manihot/genética , Control Biológico de Vectores , Transcriptoma/genética , Animales , Regulación de la Expresión Génica de las Plantas/genética , Genotipo , Hemípteros/patogenicidad , Manihot/crecimiento & desarrollo , Manihot/parasitología , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA