Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(6): 2931-2949, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36869664

RESUMEN

Bacterial nucleotide excision repair (NER), mediated by the UvrA, UvrB and UvrC proteins is a multistep, ATP-dependent process, that is responsible for the removal of a very wide range of chemically and structurally diverse DNA lesions. DNA damage removal is performed by UvrC, an enzyme possessing a dual endonuclease activity, capable of incising the DNA on either side of the damaged site to release a short single-stranded DNA fragment containing the lesion. Using biochemical and biophysical approaches, we have probed the oligomeric state, UvrB- and DNA-binding abilities and incision activities of wild-type and mutant constructs of UvrC from the radiation resistant bacterium, Deinococcus radiodurans. Moreover, by combining the power of new structure prediction algorithms and experimental crystallographic data, we have assembled the first model of a complete UvrC, revealing several unexpected structural motifs and in particular, a central inactive RNase H domain acting as a platform for the surrounding domains. In this configuration, UvrC is maintained in a 'closed' inactive state that needs to undergo a major rearrangement to adopt an 'open' active state capable of performing the dual incision reaction. Taken together, this study provides important insight into the mechanism of recruitment and activation of UvrC during NER.


Asunto(s)
Proteínas Bacterianas , Reparación del ADN , Deinococcus , Endodesoxirribonucleasas , Proteínas Bacterianas/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética
2.
Chem Res Toxicol ; 37(5): 814-823, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38652696

RESUMEN

The major product of DNA-methylating agents, N7-methyl-2'-deoxyguanosine (MdG), is a persistent lesion in vivo, but it is not believed to have a large direct physiological impact. However, MdG reacts with histone proteins to form reversible DNA-protein cross-links (DPCMdG), a family of DNA lesions that can significantly threaten cell survival. In this paper, we developed a tandem mass spectrometry method for quantifying the amounts of MdG and DPCMdG in nuclear DNA by taking advantage of their chemical lability and the concurrent release of N7-methylguanine. Using this method, we determined that DPCMdG is formed in less than 1% yield based upon the levels of MdG in methyl methanesulfonate (MMS)-treated HeLa cells. Despite its low chemical yield, DPCMdG contributes to MMS cytotoxicity. Consequently, cells that lack efficient DPC repair by the DPC protease SPRTN are hypersensitive to MMS. This investigation shows that the downstream chemical and biochemical effects of initially formed DNA damage can have significant biological consequences. With respect to MdG formation, the initial DNA lesion is only the beginning.


Asunto(s)
ADN , Desoxiguanosina , Metilmetanosulfonato , Humanos , Células HeLa , ADN/metabolismo , ADN/química , ADN/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Desoxiguanosina/química , Metilmetanosulfonato/química , Metilmetanosulfonato/farmacología , Espectrometría de Masas en Tándem , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Proteínas de Unión al ADN
3.
Nucleic Acids Res ; 50(22): 12969-12978, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36533440

RESUMEN

Sulfuration of uridine 8, in bacterial and archaeal tRNAs, is catalyzed by enzymes formerly known as ThiI, but renamed here TtuI. Two different classes of TtuI proteins, which possess a PP-loop-containing pyrophosphatase domain that includes a conserved cysteine important for catalysis, have been identified. The first class, as exemplified by the prototypic Escherichia coli enzyme, possesses an additional C-terminal rhodanese domain harboring a second cysteine, which serves to form a catalytic persulfide. Among the second class of TtuI proteins that do not possess the rhodanese domain, some archaeal proteins display a conserved CXXC + C motif. We report here spectroscopic and enzymatic studies showing that TtuI from Methanococcus maripaludis and Pyrococcus furiosus can assemble a [4Fe-4S] cluster that is essential for tRNA sulfuration activity. Moreover, structural modeling studies, together with previously reported mutagenesis experiments of M. maripaludis TtuI, indicate that the [4Fe-4S] cluster is coordinated by the three cysteines of the CXXC + C motif. Altogether, our results raise a novel mechanism for U8-tRNA sulfuration, in which the cluster is proposed to catalyze the transfer of sulfur atoms to the activated tRNA substrate.


Asunto(s)
Archaea , Cisteína , Proteínas Hierro-Azufre , ARN de Transferencia , Tiosulfato Azufretransferasa , Archaea/enzimología , Archaea/genética , Catálisis , Cisteína/metabolismo , Proteínas Hierro-Azufre/metabolismo , ARN de Transferencia/metabolismo , Tiosulfato Azufretransferasa/química , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo , Secuencias de Aminoácidos , Mutagénesis , Dominios Proteicos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo
4.
Chemistry ; 29(28): e202300303, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36867586

RESUMEN

Several types of Quantum Dots (QDs) (CdS, CdSe and InP, as well as core-shell QDs such as type I InP-ZnS, quasi type-II CdSe-CdS and inverted type-I CdS-CdSe) were considered for generating α-aminoalkyl free radicals. The feasibility of the oxidation of the N-aryl amines and the generation of the desired radical was evidenced experimentally by quenching of the photoluminescence of the QDs and by testing a vinylation reaction using an alkenylsulfone radical trap. The QDs were tested in a radical [3+3]-annulation reaction giving access to tropane skeletons and that requires the completion of two consecutive catalytic cycles. Several QDs such as CdS core, CdSe core and inverted type I CdS-CdSe core-shell proved to be efficient photocatalysts for this reaction. Interestingly, the addition of a second shorter chain ligand to the QDs appeared to be essential to complete the second catalytic cycle and to obtain the desired bicyclic tropane derivatives. Finally, the scope of the [3+3]-annulation reaction was explored for the best performing QDs and isolated yields that compare well with classical iridium photocatalysis were obtained.

5.
Part Fibre Toxicol ; 20(1): 45, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996842

RESUMEN

BACKGROUND: Perinatal exposure to titanium dioxide (TiO2), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel disease (IBD) later in life. Here, we investigate the impact of perinatal foodborne TiO2 exposure on the intestinal mucosal function and the susceptibility to develop IBD-associated colitis. Pregnant and lactating mother mice were exposed to TiO2 until pups weaning and the gut microbiota and intestinal barrier function of their offspring was assessed at day 30 post-birth (weaning) and at adult age (50 days). Epigenetic marks was studied by DNA methylation profile measuring the level of 5-methyl-2'-deoxycytosine (5-Me-dC) in DNA from colic epithelial cells. The susceptibility to develop IBD has been monitored using dextran-sulfate sodium (DSS)-induced colitis model. Germ-free mice were used to define whether microbial transfer influence the mucosal homeostasis and subsequent exacerbation of DSS-induced colitis. RESULTS: In pregnant and lactating mice, foodborne TiO2 was able to translocate across the host barriers including gut, placenta and mammary gland to reach embryos and pups, respectively. This passage modified the chemical element composition of foetus, and spleen and liver of mothers and their offspring. We showed that perinatal exposure to TiO2 early in life alters the gut microbiota composition, increases the intestinal epithelial permeability and enhances the colonic cytokines and myosin light chain kinase expression. Moreover, perinatal exposure to TiO2 also modifies the abilities of intestinal stem cells to survive, grow and generate a functional epithelium. Maternal TiO2 exposure increases the susceptibility of offspring mice to develop severe DSS-induced colitis later in life. Finally, transfer of TiO2-induced microbiota dysbiosis to pregnant germ-free mice affects the homeostasis of the intestinal mucosal barrier early in life and confers an increased susceptibility to develop colitis in adult offspring. CONCLUSIONS: Our findings indicate that foodborne TiO2 consumption during the perinatal period has negative long-lasting consequences on the development of the intestinal mucosal barrier toward higher colitis susceptibility. This demonstrates to which extent environmental factors influence the microbial-host interplay and impact the long-term mucosal homeostasis.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Embarazo , Femenino , Animales , Ratones , Disbiosis/inducido químicamente , Lactancia , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
6.
Nucleic Acids Res ; 49(7): 3997-4007, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33744947

RESUMEN

Sulfuration of uridine 34 in the anticodon of tRNAs is conserved in the three domains of life, guaranteeing fidelity of protein translation. In eubacteria, it is catalyzed by MnmA-type enzymes, which were previously concluded not to depend on an iron-sulfur [Fe-S] cluster. However, we report here spectroscopic and iron/sulfur analysis, as well as in vitro catalytic assays and site-directed mutagenesis studies unambiguously showing that MnmA from Escherichia coli can bind a [4Fe-4S] cluster, which is essential for sulfuration of U34-tRNA. We propose that the cluster serves to bind and activate hydrosulfide for nucleophilic attack on the adenylated nucleoside. Intriguingly, we found that E. coli cells retain s2U34 biosynthesis in the ΔiscUA ΔsufABCDSE strain, lacking functional ISC and SUF [Fe-S] cluster assembly machineries, thus suggesting an original and yet undescribed way of maturation of MnmA. Moreover, we report genetic analysis showing the importance of MnmA for sustaining oxidative stress.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli , Hierro/metabolismo , ARN de Transferencia/metabolismo , Azufre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Procesamiento Postranscripcional del ARN
7.
Nucleic Acids Res ; 48(16): 9082-9097, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32710616

RESUMEN

One of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1. We show that cohesin and mediator subunits are required for re-localization of OGG1 and other base excision repair factors to chromatin upon oxidative stress. The association of OGG1 with euchromatin is necessary for the removal of 8-oxoG. Mediator subunits CDK8 and MED12 bind to chromatin and interact with OGG1 in response to oxidative stress, suggesting they participate in the recruitment of the DNA glycosylase. The oxidative stress-induced association between the cohesin and mediator complexes and OGG1 reveals an unsuspected function of those complexes in the maintenance of genomic stability.


Asunto(s)
Cromatina/genética , ADN Glicosilasas/genética , Reparación del ADN/genética , Guanina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Eucromatina/genética , Inestabilidad Genómica/genética , Guanina/metabolismo , Células HeLa , Humanos , Estrés Oxidativo/genética , ARN Interferente Pequeño/genética , Transfección , Cohesinas
8.
Org Biomol Chem ; 18(10): 1892-1899, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31960874

RESUMEN

Branched oligonucleotides containing a biologically relevant DNA lesion, dCyd341, which involves an interstrand crosslink between a cytosine base on one strand and a ribose moiety on the opposite strand, were prepared in a single automated solid-phase synthesis. For this, we first prepared the phosphoramidite analogue of dCyd341 bearing an orthogonal levulinyl protecting group. Then, following the synthesis of the first DNA strand containing dCyd341, the levulinic group was removed and the synthesis was then continued from the free base hydroxyl group at the branching point, using traditional phosphoramidites. The synthesized oligonucleotides were fully characterized by MALDI-TOF/MS and were enzymatically digested, and the presence of the lesion was confirmed by HPLC-MS/MS and the sequence was finally controlled upon exonuclease digestion followed by MALDI-TOF/MS analysis. The developed strategy was successfully employed for the preparation of several short linear and branched oligonucleotides containing the aforementioned lesion.


Asunto(s)
Daño del ADN , Oligodesoxirribonucleótidos/síntesis química , Oligodesoxirribonucleótidos/genética , Técnicas de Síntesis en Fase Sólida
9.
Nucleic Acids Res ; 46(19): 10302-10318, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30247717

RESUMEN

Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic ß-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in ß-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced ß-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic ß-cell demise relevant to monogenic and polygenic forms of diabetes.


Asunto(s)
Metilación de ADN , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Metiltransferasas/genética , ARN de Transferencia/metabolismo , Anciano , Animales , Apoptosis/genética , Muerte Celular/genética , Diferenciación Celular/genética , Células Cultivadas , Fragmentación del ADN , Diabetes Mellitus/metabolismo , Ligamiento Genético , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Células Secretoras de Insulina/fisiología , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Persona de Mediana Edad , Mutación , Ratas
10.
Proc Natl Acad Sci U S A ; 114(28): 7355-7360, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655838

RESUMEN

Sulfur is present in several nucleosides within tRNAs. In particular, thiolation of the universally conserved methyl-uridine at position 54 stabilizes tRNAs from thermophilic bacteria and hyperthermophilic archaea and is required for growth at high temperature. The simple nonredox substitution of the C2-uridine carbonyl oxygen by sulfur is catalyzed by tRNA thiouridine synthetases called TtuA. Spectroscopic, enzymatic, and structural studies indicate that TtuA carries a catalytically essential [4Fe-4S] cluster and requires ATP for activity. A series of crystal structures shows that (i) the cluster is ligated by only three cysteines that are fully conserved, allowing the fourth unique iron to bind a small ligand, such as exogenous sulfide, and (ii) the ATP binding site, localized thanks to a protein-bound AMP molecule, a reaction product, is adjacent to the cluster. A mechanism for tRNA sulfuration is suggested, in which the unique iron of the catalytic cluster serves to bind exogenous sulfide, thus acting as a sulfur carrier.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , Compuestos de Sulfhidrilo/química , Azufre/química , Sitios de Unión , Catálisis , Clonación Molecular , Genoma Bacteriano , Proteínas Hierro-Azufre/química , Modelos Biológicos , Familia de Multigenes , Oxidación-Reducción , ARN de Transferencia/genética , Espectrofotometría Ultravioleta , Sulfurtransferasas/genética , Thermotoga maritima/genética
11.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630258

RESUMEN

We explore the delayed consequences of parental exposure to environmentally relevant cadmium concentrations on the life-history traits throughout generations of the freshwater crustacean Gammarus fossarum. We report the preliminary results obtained during a challenging one-year laboratory experiment in this environmental species and propose the use of population modeling to interpret the changes in offspring life-history traits regarding their potential demographic impacts. The main outcome of this first long-term transgenerational assay is that the exposure of spawners during a single gametogenesis cycle (3 weeks) could result in severe cascading effects on the life-history traits along three unexposed offspring generations (one year). Indeed, we observed a decrease in F1 reproductive success, an early onset of F2 offspring puberty with reduced investment in egg yolk reserves, and finally a decrease in the growth rate of F3 juveniles. However, the analysis of these major transgenerational effects by means of a Lefkovitch matrix population model revealed only weak demographic impacts. Population compensatory processes mitigating the demographic consequences of parental exposure seem to drive the modification of life-history traits in offspring generations. This exploratory study sheds light on the role of population mechanisms involved in the demographic regulation of the delayed effects of environmental toxicity in wild populations.


Asunto(s)
Anfípodos/efectos de los fármacos , Cadmio/efectos adversos , Cadmio/toxicidad , Anfípodos/genética , Anfípodos/fisiología , Animales , Monitoreo del Ambiente/métodos , Contaminación Ambiental/efectos adversos , Dinámica Poblacional , Reproducción/efectos de los fármacos , Maduración Sexual/efectos de los fármacos
12.
Chemistry ; 25(55): 12730-12739, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31290208

RESUMEN

The synthesis and characterisation of three novel iridium(III) bis-cyclometallated complexes is reported. Their photophysics have been fully characterised by classical methods and revealed charge-transfer (CT) and ligand-centred (LC) transitions. Their ability to selectively interact with G-quadruplex telomeric DNA over duplex DNA has been studied by circular dichroism (CD), bio-layer interferometry (BLI) and surface plasmon resonance (SPR) analyses. Interestingly, one of the complexes was able to promote photoinduced electron transfer (PET) with the guanine DNA base, which in turn led to oxidative damage (such as the formation of 8-oxoguanine) to the telomeric sequence. To the best of our knowledge, this is the first study of highly photo-oxidising bis-cyclometallated iridium(III) complexes with G-quadruplex telomeric DNA.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Guanina/análogos & derivados , Iridio/química , Dicroismo Circular , G-Cuádruplex , Guanina/química , Ligandos , Oxidación-Reducción , Telómero
13.
Phys Chem Chem Phys ; 21(42): 23418-23424, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31624816

RESUMEN

DNA-protein cross-links constitute bulky DNA lesions that interfere with the cellular machinery. Amongst these stable covalently tethered adducts, the efficient nucleophilic addition of the free amino group of lysines onto the guanine radical cation has been evidenced. In vitro addition of a trilysine peptide onto a guanine radical cation generated in a TGT oligonucleotide is so efficient that competitive addition of a water molecule, giving rise to 8-oxo-7,8-dihydroguanine, is not observed. This suggests a spatial proximity between guanine and lysine for the stabilization of the prereactive complex. We report all-atom microsecond scale molecular dynamics simulations that probe the structure and interactions of the trilysine peptide (KKK) with two oligonucleotides. Our simulations reveal a strong, electrostatically driven yet dynamic interaction, spanning several association modes. Furthermore, the presence of neighbouring cytosines has been identified as a factor favoring KKK binding. Relying on ab initio molecular dynamics on a model system constituted of guanine and methylammonium, we also corroborate a mechanistic pathway involving fast deprotonation of the guanine radical cation followed by hydrogen transfer from ammonium leaving as a result a nitrogen reactive species that can subsequently cross-link with guanine. Our study sheds new light on a ubiquitous mechanism for DNA-protein cross-links also stressing out possible sequence dependences.


Asunto(s)
Simulación de Dinámica Molecular , Oligonucleótidos/química , Oligopéptidos/química , Sitios de Unión , Guanina/química , Lisina/química , Teoría Cuántica , Termodinámica
15.
Nucleic Acids Res ; 44(1): 56-62, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26656495

RESUMEN

The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state.


Asunto(s)
Modelos Teóricos , Purinas/química , Oxígeno Singlete/química , ADN/química , Simulación de Dinámica Molecular , Oxidación-Reducción , Teoría Cuántica
17.
Chemistry ; 23(52): 12845-12852, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28815856

RESUMEN

Biogenic polyamines, which play a role in DNA condensation and stabilization, are ubiquitous and are found at millimolar concentration in the nucleus of eukaryotic cells. The interaction modes of three polyamines-putrescine (Put), spermine (Spm), and spermidine (Spd)-with a self-complementary 16 base pair (bp) duplex, are investigated by all-atom explicit-solvent molecular dynamics. The length of the amine aliphatic chain leads to a change of the interaction mode from minor groove binding to major groove binding. Through all-atom dynamics, noncovalent interactions that stabilize the polyamine-DNA complex and prefigure the reactivity, leading to the low-barrier formation of deleterious DNA-polyamine cross-links, after one-electron oxidation of a guanine nucleobase, are unraveled. The binding strength is quantified from the obtained trajectories by molecular mechanics generalized Born surface area post-processing (MM-GBSA). The values of binding free energies provide the same affinity order, Put

Asunto(s)
ADN/metabolismo , Poliaminas/metabolismo , Sitios de Unión , ADN/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Poliaminas/química , Putrescina/química , Putrescina/metabolismo , Espermidina/química , Espermidina/metabolismo , Espermina/química , Espermina/metabolismo , Termodinámica
18.
Mutagenesis ; 32(1): 203-213, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27794034

RESUMEN

The potential health effects of exposure to nanomaterials (NMs) is currently heavily studied. Among the most often reported impact is DNA damage, also termed genotoxicity. While several reviews relate the DNA damage induced by NMs and the techniques that can be used to prove such effects, the question of impact of NMs on DNA repair processes has never been specifically reviewed. The present review article proposes to fill this gap of knowledge by critically describing the DNA repair processes that could be affected by nanoparticle (NP) exposure, then by reporting the current state of the art on effects of NPs on DNA repair, at the level of protein function, gene induction and post-transcriptional modifications, and taking into account the advantages and limitations of the different experimental approaches. Since little is known about this impact, working hypothesis for the future are then proposed.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Nanopartículas/toxicidad , Animales , ADN/efectos de los fármacos , ADN/metabolismo , Daño del ADN , Humanos
19.
Biochemistry ; 55(41): 5798-5808, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27677419

RESUMEN

RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS- ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferasas/metabolismo , Catálisis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Análisis Espectral/métodos , Sulfurtransferasas/genética
20.
Plant Cell ; 25(4): 1445-62, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23590883

RESUMEN

Singlet oxygen (¹O2) is a reactive oxygen species that can function as a stress signal in plant leaves leading to programmed cell death. In microalgae, ¹O2-induced transcriptomic changes result in acclimation to ¹O2. Here, using a chlorophyll b-less Arabidopsis thaliana mutant (chlorina1 [ch1]), we show that this phenomenon can also occur in vascular plants. The ch1 mutant is highly photosensitive due to a selective increase in the release of ¹O2 by photosystem II. Under photooxidative stress conditions, the gene expression profile of ch1 mutant leaves very much resembled the gene responses to ¹O2 reported in the Arabidopsis mutant flu. Preexposure of ch1 plants to moderately elevated light intensities eliminated photooxidative damage without suppressing ¹O2 formation, indicating acclimation to ¹O2. Substantial differences in gene expression were observed between acclimation and high-light stress: A number of transcription factors were selectively induced by acclimation, and contrasting effects were observed for the jasmonate pathway. Jasmonate biosynthesis was strongly induced in ch1 mutant plants under high-light stress and was noticeably repressed under acclimation conditions, suggesting the involvement of this hormone in ¹O2-induced cell death. This was confirmed by the decreased tolerance to photooxidative damage of jasmonate-treated ch1 plants and by the increased tolerance of the jasmonate-deficient mutant delayed-dehiscence2.


Asunto(s)
Aclimatación/efectos de la radiación , Arabidopsis/genética , Luz , Mutación , Oxigenasas/genética , Oxígeno Singlete/metabolismo , Aclimatación/genética , Acetatos/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Vías Biosintéticas/efectos de la radiación , Clorofila/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Peroxidación de Lípido/efectos de la radiación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción/efectos de la radiación , Oxigenasas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Transcriptoma/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA