Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 41(46): 9669-9686, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34620720

RESUMEN

In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.


Asunto(s)
Giro Dentado/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Memoria Episódica , Neuronas/patología , Adolescente , Adulto , Anciano , Animales , Aprendizaje Discriminativo/fisiología , Femenino , Humanos , Masculino , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/fisiología , Adulto Joven
2.
Front Immunol ; 8: 436, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28450868

RESUMEN

Most people develop acute hepatitis B virus (HBV)-related hepatitis that is controlled by both humoral and cellular immune responses following acute infection. However, a number of individuals in HBV-endemic areas fail to resolve the infection and consequently become chronic carriers. While a vaccine is available and new antiviral drugs are being developed, elimination of persistently infected cells is still a major issue. Standard treatment in HBV infection includes IFN-α, nucleoside, or nucleotide analogs, which has direct antiviral activity and immune modulatory capacities. However, immunological control of the virus is often not durable. A robust T-cell response is associated with control of HBV infection and liver damage; however, HBV-specific T cells are deleted, dysfunctional, or become exhausted in chronic hepatitis patients. As a result, efforts to restore virus-specific T-cell immunity in chronic HBV patients using antiviral therapy, immunomodulatory cytokines, or therapeutic vaccination have had little success. Adoptive cell transfer of T cells with specificity for HBV antigen+ cells represents an approach aiming to ultimately eliminate residual hepatocytes carrying HBV covalently closed circular DNA (cccDNA). Here, we discuss recent findings describing HBV immunopathology, model systems, and current therapies.

3.
Oncoimmunology ; 6(7): e1334027, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28811978

RESUMEN

Optimal approaches to differentiate tumor antigen-specific cytotoxic T lymphocytes (CTLs) from pluripotent stem cells (PSCs) remain elusive. In the current study, we showed that combination of in vitro priming through Notch ligands and in vivo development facilitated the generation of tumor Ag-specific CTLs that effectively inhibited tumor growth. We co-cultured the murine induced PSCs (iPSCs) genetically modified with tyrosinase-related protein 2 (TRP2)-specific T cell receptors with OP9 cell line expressing both Notch ligands Delta-like 1 and 4 (OP9-DL1/DL4) for a week before adoptively transferred into recipient C67BL/6 mice. Three weeks later, B16 melanoma cells were inoculated subcutaneously, and the antitumor activity of the iPSC-derived T cells was assessed. We observed the development of the TRP2-specific iPSC-CD8+ T cells that responded to Ag stimulation and infiltrated into melanoma tissues, significantly inhibited the tumor growth, and improved the survival of the tumor-bearing mice. Thus, this approach may provide a novel effective strategy to treatment of malignant tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA