Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 197: 107028, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39426637

RESUMEN

The 21st century has witnessed several clinical outcomes regarding AMR. One health concept has been foreseen as a standard global public health initiative in ensuring human, animal and environmental health. The present study explores critical Gram-negative ESKAPE pathogens encompassing Acinetobacter baumannii (ACB), Klebsiella pneumoniae (KPX) and Pseudomonas aeruginosa (PAE). A comparative genomic analysis approach was utilized for identifying novel and putative genes coercing global health consequences stressing the significance of the above iatrogenic and nosocomial pathogens. O findings reveal that Pseudomonas aeruginosaPAO1 (PAE) possesses the largest genome, measuring 62,64,404 base pairs, containing 14,342 protein-coding genes and an elevated count of ORFs, surpassing other organisms. Notably, P. aeruginosa PAO1 exhibits a comprehensive metabolic landscape with 355 pathways and 1659 metabolic reactions, encompassing 200 biosynthesis and 132 degradation pathways. Transferases are the predominant enzyme category across all three genomes, followed by oxidoreductases and hydrolases. The pivotal role of beta-lactamase in conferring resistance against antibiotics is also evident in all three microbes. This investigation underscores the PAE genome harbours genes and enzymes associated with heightened virulence in antibiotic resistance. The holistic review combined with comparative genomics underlines the significance of delving into the genomes of these antimicrobial-resistant organisms. In silico methodologies are increasingly stressed in aiding the successful accomplishment of the United Nations Sustainable Development Goal -3: Good Health and Well-being. The prominent findings establish Carbapenem resistance and evolutionary lineages of the MCR-1 gene conferring AMR landscapes for future research.

2.
Environ Res ; 243: 117752, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008202

RESUMEN

Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).


Asunto(s)
Azadirachta , Suelo , Suelo/química , Árboles , Ecosistema , Carbono/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Nitrógeno/análisis , Hojas de la Planta
3.
Environ Res ; 259: 119527, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977155

RESUMEN

The wastewater produced during coffee cherry pulping is known for containing harmful pollutants, particularly organic compounds containing carbon, which pose significant risks to the environment and human health. This research aimed to evaluate the effectiveness of Tamarindus indica L. seed polysaccharides in treating coffee effluent. Varying doses (ranging from 0.05 to 0.30 g) of the isolated polysaccharides were added to samples of the effluent to determine their ability to remove contaminants, especially those of organic carbon origin. Notably, a dosage of 0.10 g demonstrated optimal efficacy, resulting in a 55% decrease in total dissolved solids and an 80% decrease in chemical oxygen demand. Additionally, Fourier-transform infrared and zeta potential analysis of both the polysaccharides and the treated effluent samples revealed the presence of functional groups potentially pivotal for the pollutant removal activity of the isolated polysaccharides. This provides insights into the coagulation mechanism of Tamarindus indica L. seed polysaccharides in eliminating organic carbon-based pollutants. These findings highlight the potential of Tamarindus polysaccharides as a sustainable alternative to chemical agents for removing pollutants, thus promoting environmental sustainability and human well-being.


Asunto(s)
Polisacáridos , Semillas , Tamarindus , Aguas Residuales , Tamarindus/química , Polisacáridos/química , Semillas/química , Aguas Residuales/química , Carbono/química , Contaminantes Químicos del Agua/análisis , Residuos Industriales/análisis , Café/química , Eliminación de Residuos Líquidos/métodos
4.
Environ Geochem Health ; 46(9): 349, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073492

RESUMEN

Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.


Asunto(s)
Ácidos Alcanesulfónicos , Biodegradación Ambiental , Caprilatos , Fluorocarburos , Fluorocarburos/metabolismo , Caprilatos/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Ácidos Alcanesulfónicos/toxicidad , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Animales , Tecnología Química Verde/métodos
5.
Environ Geochem Health ; 46(8): 290, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976075

RESUMEN

Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Oligoquetos , Reproducción , Contaminantes del Suelo , Oligoquetos/efectos de los fármacos , Metales Pesados/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Reproducción/efectos de los fármacos , Restauración y Remediación Ambiental/métodos , Ensayo Cometa , Espectroscopía Infrarroja por Transformada de Fourier , Daño del ADN , Suelo/química
6.
Environ Geochem Health ; 46(10): 378, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167275

RESUMEN

Significant efforts have been dedicated to creating recyclable and efficient methods for treating waste dyes, including rhodamine B (RhB). Nevertheless, challenges such as complex operational techniques, high costs, energy consumption, and inefficacy in dye removal persist. Here, the synthesis and application of TiO2/Fe3O4/SiO2 for photocatalytic degradation of RhB dye pollutants have been explored. This research was initiated with magnetite (Fe3O4) synthesis using the coprecipitation method, followed by silica (SiO2) extraction from rice husk waste using the sol-gel process, and a hydrothermal method for synthesizing titanium dioxide (TiO2) and TiO2/Fe3O4/SiO2 nanocomposite. The crystalline structure of TiO2/Fe3O4/SiO2 was obtained with Fe3O4 as the core, while TiO2 and SiO2 as the shell. The particle size analysis showed the nanosize of TiO2/Fe3O4/SiO2 (1.04 ± 0.46 nm). TiO2/Fe3O4/SiO2 nanocomposite boasts a high surface area of 48.025 m2/g, 2.2 times higher than unmodified TiO2. This nanocomposite also displayed paramagnetic properties with a saturation magnetization of 9.117 emu/g, facilitating easy separation in photocatalytic applications. The photocatalytic activity of TiO2/Fe3O4/SiO2 exhibited effectively degraded RhB, achieving a degradation rate of 53.58% and an excellent rate constant of 0.7303 min-1. The RhB photodegradation in this study requires a moderate irradiation time (60 min), uses only a tiny amount of photocatalyst (100 mg), and does not need additional chemicals. Moreover, this study has another advantage of utilizing rice husk as a silica source, offering an eco-friendly and sustainable approach.


Asunto(s)
Nanocompuestos , Rodaminas , Dióxido de Silicio , Titanio , Contaminantes Químicos del Agua , Titanio/química , Rodaminas/química , Dióxido de Silicio/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Catálisis , Fotólisis , Óxido Ferrosoférrico/química
7.
Environ Res ; 235: 116611, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37437863

RESUMEN

The current study aims to investigate the influence of seasonal changes on the pollution loads of the sediment of a coastal area in terms of its physicochemical features. The research will focus on analyzing the nutrients, organic carbon and particle size of the sediment samples collected from 12 different sampling stations in 3 different seasons along the coastal area. Additionally, the study discusses about the impact of anthropogenic activities such as agriculture and urbanization and natural activities such as monsoon on the sediment quality of the coastal area. The nutrient changes in the sediment were found to be: pH (7.96-9.45), EC (2.89-5.23 dS/m), nitrogen (23.98-57.23 mg/kg), phosphorus (7.75-11.36 mg/kg), potassium (217-398 mg/kg), overall organic carbon (0.35-0.99%), and sediment proportions (8.91-9.3%). Several statistical methods were used to investigate changes in sediment quality. According to the three-way ANOVA test, the mean value of the sediments differs significantly with each season. It correlates significantly with principal factor analysis and cluster analysis across seasons, implying contamination from both natural and man-made sources. This study will contribute to developing effective management strategies for the protection and restoration of degraded coastal ecosystem.


Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , Humanos , Sedimentos Geológicos/análisis , Estaciones del Año , Ecosistema , Monitoreo del Ambiente/métodos , Bahías , Carbono/análisis , Contaminantes Químicos del Agua/análisis
8.
Environ Res ; 227: 115716, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36940816

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are considered a major class of organic contaminants or pollutants, which are poisonous, mutagenic, genotoxic, and/or carcinogenic. Due to their ubiquitous occurrence and recalcitrance, PAHs-related pollution possesses significant public health and environmental concerns. Increasing the understanding of PAHs' negative impacts on ecosystems and human health has encouraged more researchers to focus on eliminating these pollutants from the environment. Nutrients available in the aqueous phase, the amount and type of microbes in the culture, and the PAHs' nature and molecular characteristics are the common factors influencing the microbial breakdown of PAHs. In recent decades, microbial community analyses, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively researched. Although xenobiotic-degrading microbes have a lot of potential for restoring the damaged ecosystems in a cost-effective and efficient manner, their role and strength to eliminate the refractory PAH compounds using innovative technologies are still to be explored. Recent analytical biochemistry and genetically engineered technologies have aided in improving the effectiveness of PAHs' breakdown by microorganisms, creating and developing advanced bioremediation techniques. Optimizing the key characteristics like the adsorption, bioavailability, and mass transfer of PAH boosts the microorganisms' bioremediation performance, especially in the natural aquatic water bodies. This review's primary goal is to provide an understanding of recent information about how PAHs are degraded and/or transformed in the aquatic environment by halophilic archaea, bacteria, algae, and fungi. Furthermore, the removal mechanisms of PAH in the marine/aquatic environment are discussed in terms of the recent systemic advancements in microbial degradation methodologies. The review outputs would assist in facilitating the development of new insights into PAH bioremediation.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Biodegradación Ambiental , Ecosistema , Agua , Contaminantes Ambientales/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/análisis
9.
Environ Res ; 236(Pt 2): 116810, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37532209

RESUMEN

Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20ß-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.


Asunto(s)
Contaminantes Ambientales , Progestinas , Animales , Masculino , Progestinas/farmacología , Aguas Residuales/toxicidad , Ecosistema , Motilidad Espermática , Peces , Reproducción , Receptores de Progesterona , Esteroides/farmacología
10.
Environ Monit Assess ; 195(12): 1467, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962670

RESUMEN

The aim of the work was to establish the effect of anthropogenic activities and seasonality on physico-chemical parameters and heavy metal levels of River Yala (RY) within RY Basin of Lake Victoria (LV), as well as the associated ecological risks. Analyses were done on the collected samples in order to establish the levels of EC, pH, DO, temperature, conductivity, turbidity, acidity, alkalinity, BOD, COD, DOC, TOC and heavy metals (Cu, Fe, Pb, Mn, Zn, Cr and Cd) in RY water and sediments adjacent to Agricultural Farms during dry and wet seasons. The levels in terms of µg/mL, µS/cm (EC), NTU (turbidity) of analyzed parameters in the Agricultural Farms in water ranged from 0.01±0.00 to 121.75±15.23 (Upstream pristine sources of RY - S), 0.02±0.01 to 184.83±23.43 (Nandi Tea Estate and Kaimosi Agricultural Farms - N), 0.02±0.01 to 149.67±22.77 (Subsistence Farms - Sub), 0.02±0.01 to 209.33±18.09 (Lake Agro Limited Agricutural Farms and Yala Swamp - D) and 0.01±0.00 to 164.25±30.33 (Terminal of RY - T). The levels in µg/g of analyzed parameters in sediments ranged from 7.2±1.46 to 3342.8±538.7 (S), 9.12±0.2 to 4063.2±90.4 (N), 3.15±1.14 to 5998.5±588.4 (Sub), 2.03±0.76 to 4519.8±194.9 (D) and 2.13±0.75 to 5514.4±201.4 (T). The significant differences in the levels of analyzed parameters in water between dry and wet seasons were computed as; EC (+20.54 µS/cm), alkalinity (-2.85 µg/mL), DOC (+0.24 µg/mL), Fe (+0.58 µg/mL), Pb (+0.11 µg/mL), Zn (+0.07 µg/mL) and Cd (+0.01 µg/mL) while that for Mn in sediment samples was +163.8937 µg/g. The significantly (p ≤ 0.05) positive values indicated that wet season had more impact on the levels than dry season. There was positive correlation of zinc in water and sediments during dry and wet season. Chromium correlated positively in water and sediments during wet season. Copper and cadmium correlated negatively during dry and wet season while Mn only wet season. Results of geostatistical indices (CF, Cd, mCd, PLI, Er and RI) indicated that sediments located at regions N, D and T were highly contaminated with the heavy metals. However, a wetland at the mouth of Lake Victoria cleaned the water before it drained into the lake. Therefore, despite contamination of RY through anthropogenic activities, wetland mitigation protects LV from pollution by the river, indicating the important ecological and restorative functions played by wetlands.


Asunto(s)
Cadmio , Metales Pesados , Lagos , Ríos , Plomo , Monitoreo del Ambiente , Agua
11.
Environ Res ; 214(Pt 1): 113771, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35798270

RESUMEN

In recent years, enormous amounts of spent mushroom substrate (SMS) have been generated because of the rapid development of mushroom production. Since the conventional disposal methods of these residues can cause serious environmental problems, alternative waste management techniques are required to ensure sustainable agriculture. However, SMS might be not suitable for vermicomposting when used alone. Therefore, the primary purpose of this study was to investigate the effect of Azolla microphylla (Azolla) biomass, eggshells, fruit peels, and cassava pulp on the biodegradation process of SMS. The results showed the treatments supplemented with cassava pulp and fruit peel waste improved the growth of earthworms, while the carbon-to-nitrogen ratio of these vermicomposts decreased significantly (p < 0.05) due to the improved total nitrogen contents (7.64 g kg-1 and 6.71 g kg-1). Concerning the degradation process and the vermicompost quality, the addition of these agro-residues facilitated the enzyme activities (cellulase, urease, and alkaline phosphatase) and increased the total macronutrient (P, K, Mg, and Ca) and phytohormone (fruit peel waste: AA, GA3, and cytokinin; cassava pulp: cytokinin) contents of the final products compared to the control treatment. On the other hand, Azolla had no additional effect on the fecundity and growth of Eudrilus eugenia. Meanwhile, the treatment supplemented with eggshells was high in Mg (7.15 g kg-1) and Ca (305.6 g kg-1). Overall, the combined decomposition of SMS-based bedding material with Azolla, eggshells, fruit peel waste, and cassava pulp resulted in mature organic fertilizers with improved chemical properties.


Asunto(s)
Agaricales , Oligoquetos , Animales , Citocininas , Estiércol , Nitrógeno , Nutrientes , Reguladores del Crecimiento de las Plantas , Suelo
12.
Environ Res ; 214(Pt 4): 114119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36007568

RESUMEN

Composting is a propitious technology to change bio-degradable solid waste into organic fertilizers. Considering this, five types of organic waste viz., leaf litter (Tectona grandis), water hyacinth (Eichhornia crassipes), cauliflower waste (Brassica oleracea var. botrytis), coir pith, and mushroom spent waste were composted with and without the use of earthworm (Eisenia fetida). The reaction (pH) and electrical conductivity of compost and vermicompost ranged from 6.98 to 7.45 and 6.97 to 7.36, 0.11 to 0.21 dSm-1, and 0.11 to 0.25 dSm-1, respectively. The chemical oxygen demand both the compost and vermicompost ranged from 687 to 1170 mg l-1 and 633-980 mg l-1 respectively. Cation exchange capacity (CEC) ranged from, 75 to 121 (c mol (p+) kg-1, and 80 to 127 (c mol (p+) kg-1, respectively. The C:N of compost and vermicompost varied from 16:1 to 33:1 and 12:1 to 19:1, respectively. The organic carbon content was decreased (18.3-38.7%), while secondary and micronutrient contents increased over the initial concentration. The NH4+ and NO3- content of compost and vermicompost ranged from 270 to 510 mg kg-1 and 230-430 mg kg-1, 560 to 105 mg kg-1, and 690-1100 mg kg-1, respectively. The nitrification index (NH4+/NO3-) ranged from 0.3 to 0.9 in composts and 0.3 to 0.6 in vermicomposts. The dehydrogenase and urease activity varied from 685 to 1696 µg g-1 hr-1 and 938-2549 µg TPF g-1 day-1 respectively. The bacteria, fungi and actinomycetes population were 2-3, 0.3-0.7 and 3-8 times more in vermicompost over the corresponding compost. This study confirmed that compared to compost, vermicompost showed better nutrients and microbial properties.


Asunto(s)
Compostaje , Oligoquetos , Animales , Bovinos , Heces , Femenino , Estiércol , Suelo/química , Residuos Sólidos
13.
Environ Res ; 205: 112477, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863690

RESUMEN

Green mediated biosynthesis of iron oxide nanoparticles utilising Rosa indica flower petal extracts (RIFP-FeONPs) was used in this investigation. The RIFP-FeONPs were evaluated by the UV-Visible Spectroscopy, FTIR, SEM, EDX, XRD, Zeta potentials, and DLS, and been engaged than for the elimination of Cr (VI) from the contaminated environments. At 269 nm, the RIFP-FeONPs surface plasmon vibration bands were observed, which attributed to the Fe3+. XRD patterns of RIFP-FeONPs depicted the intense diffraction peak of face-centered cubic (fcc) iron at a 2θ value of 45.33° from the (311) lattice plane indisputably revealed that the particles are constituted of pure iron. The fabricated nanomaterials are spherical and polydisperse with a diameter of 70-120 nm, and various agglomeration clusters are attributable to intermolecular interaction. Zeta potential measurement and particle size distribution of RIFP-FeONPs showed a mean average size of 115.5 ± 29 nm and a polydispersity index (PDI) of 0.420. The study aims to analyse the appropriateness of RIFP-FeONPs for removing hexavalent chromium from the aqueous environment and the application of adsorption isotherm and statistical models in the experiment. The sorption of Cr (VI) on RIFP-FeONPs was observed to fit well with the isothermal models (R2 = 0.98). The linear correlation between processing parameters and time demonstrated that the adsorption efficiency of Cr (VI) well correlated with the pseudo-first order kinetic model and isothermal adsorption with the Langmuir and Freundlich isothermal models, so that the RIFP-FeONPs could be a prospective nanosorbent for hexavalent chromium removal from industrial waste.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Cromo/análisis , Concentración de Iones de Hidrógeno , Hierro/química , Cinética , Nanopartículas/química , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis
14.
Environ Monit Assess ; 195(1): 126, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36401680

RESUMEN

The current study focused on the monitoring of pollution loads in the Kalpakkam coastal zone of India in terms of physico-chemical characteristics of sediment. The investigation took place at 12 sampling points around the Kalpakkam coastal zone for one year beginning from 2019. The seasonal change of nutrients in the sediment, such as nitrogen, phosphorus, potassium, total organic carbon, and particles size distribution, was calculated. Throughout the study period, the pH (7.55 to 8.99), EC (0.99 to 4.98 dS/m), nitrogen (21.74 to 58.12 kg/ha), phosphorus (7.5 to 12.9 kg/ha), potassium (218 to 399 kg/ha), total organic carbon (0.11 to 0.88%), and particle size cumulative percent of sediments (from 9.01 to 9.39%) was observed. A number of multivariate statistical techniques were used to examine the changes in sediment quality. The population means were substantially different according to the three-way ANOVA test at the 0.05 level. Principal component analysis and cluster analysis showed a substantial association with all indicators throughout all seasons, implying contamination from both natural and anthropogenic causes. The ecosystem of the Kalpakkam coastal zone has been affected by nutrient contamination.


Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , Bahías , Carbono/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Contaminantes Químicos del Agua/análisis , Océano Índico
15.
Environ Monit Assess ; 195(1): 10, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36269455

RESUMEN

Phenol, an aromatic chemical commonly found in domestic and industrial effluents, upon its introduction into aquatic ecosystems adversely affects the indigenous biota, the invertebrates and the vertebrates. With the increased demand for agrochemicals, a large amount of phenol is released directly into the environment as a byproduct. Phenol and its derivatives tend to persist in the environment for longer periods which in turn poses a threat to both humans and the aquatic ecosystem. In our current study, the response of Labeo rohita to sublethal concentrations of phenol was observed and the results did show a regular decrease in biochemical constituents of the targeted organs. Exposure of Labeo rohita to sublethal concentration of phenol (22.32 mg/L) for an epoch of 7, 21 and 28 days shows a decline in lipid, protein, carbohydrate content and phosphatase activity in target organs such as the gills, muscle, intestine, liver and kidney of the fish. The present study also aims to investigate the toxic effects of phenol with special reference to the haematological parameters of Labeo rohita. At the end of the exposure period, the blood of the fish was collected by cutting the caudal peduncle with a surgical scalpel. And it was observed that the red blood corpuscle count (RBC), white blood corpuscle (WBC), haemoglobin count (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values showed a decline after exposure to phenol for 7 days, while white blood corpuscle (WBC) shows an increased count. At 21 days and 28 days, all the haematological parameters showed a significant decrease.


Asunto(s)
Cyprinidae , Fenol , Contaminantes del Agua , Animales , Humanos , Agroquímicos , Carbohidratos , Cyprinidae/metabolismo , Ecosistema , Monitoreo del Ambiente , Agua Dulce/química , Hemoglobinas/metabolismo , Lípidos , Fenol/toxicidad , Monoéster Fosfórico Hidrolasas/metabolismo , Contaminantes del Agua/química , Contaminantes del Agua/toxicidad
16.
Environ Monit Assess ; 195(1): 12, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36271213

RESUMEN

The goal of this study was to come up with an efficient method for treating cheese production wastewater. Because the effluent has a higher concentration of organic and inorganic materials, the indigenous microbial treatment process was used to effectively remove total dissolved solids (TDS), chemical oxygen demand (COD), and color without the addition of any nutrients. The indigenous microorganisms were tested for color, TDS, and COD elimination by growing them in "nutrient broth medium" loaded with different amounts of cheese effluent. The isolates were identified by 16S rRNA sequencing, and the results revealed that strain 1 was Enterobacter cloacae, strain 2 was Lactococcus garvieae, and strains 3 and 4 were Bacillus cereus and Bacillus mycoides, respectively. After 36 h of incubation, the data were evaluated. Among all the microbes, E. cloacae reduced TDS and COD from the effluent the most (80 ± 0.2% and 87 ± 0.4% COD, respectively). When compared to individual species, consortia were more efficient (86 ± 0.2% TDS and 90 ± 0.3% COD). On treatment, the correlation coefficient "r" for TDS and COD elimination was found to be 1, resulting in a positive linear connection. The current study suggests that microbial therapies are both effective and environmentally beneficial.


Asunto(s)
Queso , Contaminantes Ambientales , Monitoreo del Ambiente , ARN Ribosómico 16S , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
17.
Mol Cell Biochem ; 476(1): 57-68, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32851589

RESUMEN

Myricetin is categorized under the secondary metabolite flavonoid which includes a diverse range of consumable plant parts, and it has a potential against several classes of cancer including cancers and tumors. In the present study, the anticancer potential of the unique flavonoid-myricetin in A549 lung cancer cells was evaluated. Among different doses of myricetin, 73 µg/ml was more effective to prevent the cancer cell growth. It also promoted sub-G1 phase aggregation of cells and a equivalent decrease in the fraction of cells entering the S and subsequent phase which indicates apoptotic cell death. Myricetin generated enormous free radicals and, altered the potential of mitochondrial membrane in A549 cells as paralleled to untreated cells. In addition, myricetin treatment intensified the expression of P53 and relegated the expression of EGFR in A549 cells. These results suggested that myricetin exhibits cytotoxic potential by arresting the progression of cell cycle and ROS-dependent mitochondria-mediated mortality in cancer A549 lung cancer cells and it would be useful to develop as a drug candidate for lung cancer therapeutics. In silico experiments were carried out against human EGFR and P53 tumor suppressor protein to gain more insights into the binding mode of the myricetin may act as significant potential for anticancer therapy.


Asunto(s)
Flavonoides/farmacología , Neoplasias Pulmonares/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Células A549 , Antineoplásicos/farmacología , Apoptosis , Ciclo Celular , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular , Simulación por Computador , Fragmentación del ADN , Receptores ErbB/metabolismo , Radicales Libres , Humanos , Concentración 50 Inhibidora , Ligandos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
18.
Environ Res ; 200: 111777, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34333016

RESUMEN

The presence of antibiotics in the wastewater is one of the important issues related to environmental management. In this study, antibiotics-degrading bacteria were screened from the enriched sewage sludge sample. Among the isolated bacterial strains, Bacillus subtilis AQ03 showed maximum antibiotic tolerance (>2000 ppm). The characterized strain B. subtilis AQ03 degraded sulfamethaoxazole and sulfamethoxine and the optimum nutrient and physical-factors were analyzed. B. subtilis AQ03 degraded 99.8 ± 1.3 % sulfamethaoxazole, and 93.3 ± 6.2 % sulfamethoxine. Sodium nitrate and ammonium chloride were improved antibiotics degradation (<90 %). The optimized conditions were maintained in a moving bed bioreactor for the removal of antibiotics and nutrients from the wastewater. The selected strain considerably produced proteases (109.4 U/mL), amylases (55.1 U/mL), cellulase (9.6 U/mL) and laccases (15.2). In moving bed reactor, sulfamethaoxazole degradation was maximum after 8 days (100 ± 1.5 %) and sulfamethoxazole (100 ± 0) was removed completely from wastewater after 10 days. In moving bed reactor, biological oxygen demand (92.1 ± 2.8 %), chemical oxygen demand (79.6 ± 1.2 %), nitrate (89.4 ± 3.9 %) and phosphate (91.8 ± 1.2) were removed from the wastewater along with antibiotics after 10 days of treatment. The findings indicate that the indigenous bacterial communities and the ability to survive in the presence of high antibiotic concentrations and xenobiotics. Moving bed bioreactor is useful for the removal of nutrients and antibiotics from wastewater.


Asunto(s)
Preparaciones Farmacéuticas , Aguas Residuales , Reactores Biológicos , Nutrientes , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
19.
Environ Res ; 202: 111669, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34252429

RESUMEN

The waste water released from industries which contain pollutants like heavy metals, dyes and other toxic chemicals brings numerous harms to the ecosystem and humans. Nowadays the nanocomposites based technologies are effectively used for environmental remediation. In the present study, hexavalent chromium was removed from the industrial effluent using magnetite carbon nanocomposite. The nanocomposite composed of highly porous carbon and iron oxide nanoparticles prepared by using agrowastes (sugarcane bagasse and orange peel extract). Iron oxide nanoparticles (FeONPs) formation was confirmed by UV-visible spectroscopy; incorporation of magnetite with highly porous carbon was established by Fourier Transforms Infrared Spectroscopy and X-ray Diffraction Spectroscopy. Morphological features of magnetite nanoparticles and highly porous carbon were analyzed using Scanning Electron Microscope and Transmission Electron Microscope. Magnetic properties analyzed by Vibrating Sample Magnetometer revealed magnetite carbon nanocomposite exhibited better Ms value than highly porous carbon. The concentration of Cr6+ in treated effluent was determined using Atomic Absorption Spectroscopy. Pseudo-second order equation fitted with kinetics and the Langmuir monolayer favors for isotherm. This study reveals efficiency in Cr6+ removal from effluent using magnetite carbon nanocomposites which extends their application in waste water treatment.


Asunto(s)
Nanopartículas de Magnetita , Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Carbono , Cromo , Ecosistema , Óxido Ferrosoférrico , Humanos , Cinética , Aguas Residuales , Contaminantes Químicos del Agua/análisis
20.
Environ Res ; 201: 111585, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181925

RESUMEN

Iron oxide nanoparticles synthesis is an expanding area of research due of their magnetic properties and possible applications in several novel technologies. FeONPs are indispensable in the biomedical field for diagnosis, treatments and drug delivery and in bioremediation applications. The synthesis route of nanoparticles is a major concern because biological methods are eco-friendly, and chemical methods are considered toxic. The objective of this study is to synthesize FeONPs by two different methods and to compare their properties and efficiency in applications. FeONPs were synthesized and characterized by microscopic and various spectroscopic techniques. The synthesized FeONPs were screened for their cytotoxic activity on PBMCs using MTT assay and found to exhibit good biocompatibility. Moreover, the GS FeONPs exhibited potential antibacterial activities and meanwhile showed less toxicity in brine shrimp lethality assay. Hence, these nanoparticles are biocompatible, environmentally safe and can be utilized in many medical applications.


Asunto(s)
Tecnología Química Verde , Nanopartículas Magnéticas de Óxido de Hierro , Materiales Biocompatibles , Nanopartículas del Metal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA