Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34445469

RESUMEN

Abasic (apurinic/apyrimidinic, AP) sites are ubiquitous DNA lesions arising from spontaneous base loss and excision of damaged bases. They may be processed either by AP endonucleases or AP lyases, but the relative roles of these two classes of enzymes are not well understood. We hypothesized that endonucleases and lyases may be differentially influenced by the sequence surrounding the AP site and/or the identity of the orphan base. To test this idea, we analysed the activity of plant and human AP endonucleases and AP lyases on DNA substrates containing an abasic site opposite either G or C in different sequence contexts. AP sites opposite G are common intermediates during the repair of deaminated cytosines, whereas AP sites opposite C frequently arise from oxidized guanines. We found that the major Arabidopsis AP endonuclease (ARP) exhibited a higher efficiency on AP sites opposite G. In contrast, the main plant AP lyase (FPG) showed a greater preference for AP sites opposite C. The major human AP endonuclease (APE1) preferred G as the orphan base, but only in some sequence contexts. We propose that plant AP endonucleases and AP lyases play complementary DNA repair functions on abasic sites arising at C:G pairs, neutralizing the potential mutagenic consequences of C deamination and G oxidation, respectively.


Asunto(s)
Arabidopsis/enzimología , Emparejamiento Base , Daño del ADN , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Arabidopsis/genética , Sitios de Unión , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas/genética , Humanos , Especificidad por Sustrato
2.
Nature ; 464(7288): 606-9, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20336145

RESUMEN

Although mammalian hearts show almost no ability to regenerate, there is a growing initiative to determine whether existing cardiomyocytes or progenitor cells can be coaxed into eliciting a regenerative response. In contrast to mammals, several non-mammalian vertebrate species are able to regenerate their hearts, including the zebrafish, which can fully regenerate its heart after amputation of up to 20% of the ventricle. To address directly the source of newly formed cardiomyocytes during zebrafish heart regeneration, we first established a genetic strategy to trace the lineage of cardiomyocytes in the adult fish, on the basis of the Cre/lox system widely used in the mouse. Here we use this system to show that regenerated heart muscle cells are derived from the proliferation of differentiated cardiomyocytes. Furthermore, we show that proliferating cardiomyocytes undergo limited dedifferentiation characterized by the disassembly of their sarcomeric structure, detachment from one another and the expression of regulators of cell-cycle progression. Specifically, we show that the gene product of polo-like kinase 1 (plk1) is an essential component of cardiomyocyte proliferation during heart regeneration. Our data provide the first direct evidence for the source of proliferating cardiomyocytes during zebrafish heart regeneration and indicate that stem or progenitor cells are not significantly involved in this process.


Asunto(s)
Desdiferenciación Celular , Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración/fisiología , Pez Cebra/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Proliferación Celular , Regulación de la Expresión Génica , Miocitos Cardíacos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Regeneración/genética , Sarcómeros/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Quinasa Tipo Polo 1
3.
BMC Biol ; 8: 5, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089153

RESUMEN

BACKGROUND: Dedifferentiation occurs naturally in mature cell types during epimorphic regeneration in fish and some amphibians. Dedifferentiation also occurs in the induction of pluripotent stem cells when a set of transcription factors (Oct4, Sox2, Klf4 and c-Myc) is over expressed in mature cell types. RESULTS: We hypothesised that there are parallels between dedifferentiation or reprogramming of somatic cells to induced pluripotent stem cells and the natural process of dedifferentiation during epimorphic regeneration. We analysed expression levels of the most commonly used pluripotency associated factors in regenerating and non-regenerating tissue and compared them with levels in a pluripotent reference cell. We found that some of the pluripotency associated factors (oct4/pou5f1, sox2, c-myc, klf4, tert, sall4, zic3, dppa2/4 and fut1, a homologue of ssea1) were expressed before and during regeneration and that at least two of these factors (oct4, sox2) were also required for normal fin regeneration in the zebrafish. However these factors were not upregulated during regeneration as would be expected if blastema cells acquired pluripotency. CONCLUSIONS: By comparing cells from the regeneration blastema with embryonic pluripotent reference cells we found that induced pluripotent stem and blastema cells do not share pluripotency. However, during blastema formation some of the key reprogramming factors are both expressed and are also required for regeneration to take place. We therefore propose a link between partially reprogrammed induced pluripotent stem cells and the half way state of blastema cells and suggest that a common mechanism might be regulating these two processes.


Asunto(s)
Desdiferenciación Celular/fisiología , Reprogramación Celular/fisiología , Regeneración/fisiología , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Desdiferenciación Celular/genética , Reprogramación Celular/genética , Electroporación , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica , Hibridación in Situ , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Regeneración/genética , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/fisiología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
4.
J Cardiovasc Med (Hagerstown) ; 11(5): 369-80, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20179605

RESUMEN

In mammals, after a myocardial infarction episode, the damaged myocardium is replaced by scar tissue with negligible cardiomyocyte proliferation. Zebrafish, in contrast, display an extensive regenerative capacity, as they are able to restore completely lost cardiac tissue after partial ventricular amputation. Although questions about the early signals that drive the regenerative response and the relative role of each cardiac cell type in this process still need to be answered, the zebrafish is emerging as a very valuable tool to understand heart regeneration and to devise strategies that may be of potential value to treat human cardiac disease. Here, we performed a genome-wide transcriptome profile analysis focusing on the early time points of zebrafish heart regeneration and compared our results with those of previously published data. Our analyses confirmed the differential expression of several transcripts and identified additional genes whose expression is differentially regulated during zebrafish heart regeneration. We validated the microarray data by conventional and/or quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For a subset of these genes, their expression pattern was analyzed by in-situ hybridization and shown to be upregulated in the regenerating area of the heart. Our results offer new insights into the biology of heart regeneration in the zebrafish and, together with future experiments in mammals, may be of potential interest for clinical applications.


Asunto(s)
Perfilación de la Expresión Génica , Corazón/fisiología , Miocardio/metabolismo , Regeneración , Animales , Catepsinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pez Cebra , Quinasa Tipo Polo 1
5.
Genes Dev ; 20(23): 3232-7, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17114576

RESUMEN

The cellular and molecular bases allowing tissue regeneration are not well understood. By performing gain- and loss-of-function experiments of specific members of the Wnt pathway during appendage regeneration, we demonstrate that this pathway is not only necessary for regeneration to occur, but it is also able to promote regeneration in axolotl, Xenopus, and zebrafish. Furthermore, we show that changes in the spatiotemporal distribution of beta-catenin in the developing chick embryo elicit apical ectodermal ridge and limb regeneration in an organism previously thought not to regenerate. Our studies may provide valuable insights toward a better understanding of adult tissue regeneration.


Asunto(s)
Extremidades/fisiología , Regeneración/fisiología , Proteínas Wnt/fisiología , beta Catenina/fisiología , Ambystoma/crecimiento & desarrollo , Animales , Larva , Xenopus , Proteínas de Xenopus/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA