Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464041

RESUMEN

Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.

2.
Elife ; 122023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36795469

RESUMEN

Proper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in Drosophila starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells. We justify assignment of key germline and somatic cell types using combinations of known markers, in situ hybridization, and analysis of extant protein traps. Comparison of single cell and single nucleus datasets proved particularly revealing of dynamic developmental transitions in germline differentiation. To complement the web-based portals for data analysis hosted by the FCA, we provide datasets compatible with commonly used software such as Seurat and Monocle. The foundation provided here will enable communities studying spermatogenesis to interrogate the datasets to identify candidate genes to test for function in vivo.


Asunto(s)
Células Madre Adultas , Testículo , Animales , Masculino , Testículo/metabolismo , Drosophila , RNA-Seq , Semen
3.
Curr Opin Cell Biol ; 73: 1-8, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34091218

RESUMEN

Germ cells are uniquely capable of maintaining cellular immortality, allowing them to give rise to new individuals in generation after generation. Recent studies have identified that the germline state is plastic, with frequent interconversion between germline differentiation states and across the germline/soma border. Therefore, features that grant germline immortality must be inducible, with other cells undergoing some form of rejuvenation to a germline state. In this review, we summarize the breadth of our current interpretations of germline plasticity and the ways in which these fate conversion events can aid our understanding of the underlying hallmarks of germline immortality.


Asunto(s)
Células Germinativas , Plásticos , Diferenciación Celular , Humanos
4.
Dev Cell ; 56(16): 2267-2268, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34428394

RESUMEN

Stem cell niches are well-characterized factories of signaling information, but niche cells themselves also rely on their neighbors for fate maintenance. In this issue of Developmental Cell, Herrera et al. reveal bi-directional communication between Drosophila testis niche "hub" cells and somatic cyst stem cells.


Asunto(s)
Proteínas de Drosophila , Nicho de Células Madre , Animales , Drosophila , Proteínas de Drosophila/genética , Células Germinativas , Masculino , Células Madre , Testículo
5.
Cell Stem Cell ; 28(7): 1307-1322.e5, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33882291

RESUMEN

Planarian whole-body regeneration is enabled by stem cells called neoblasts. At least some neoblasts are individually pluripotent. Neoblasts are also heterogeneous, with subpopulations of specialized neoblasts having different specified fates. Fate specification in neoblasts is regulated by fate-specific transcription factor (FSTF) expression. Here, we find that FSTF expression is common in neoblast S/G2/M cell-cycle phases but less common in G1. We find that specialized neoblasts can divide to produce progeny with asymmetric cell fates, suggesting that they could retain pluripotency. Furthermore, no known neoblast class was present in all neoblast colonies, suggesting that pluripotency is not the exclusive property of any known class. We tested this possibility with single-cell transplantations, which indicate that at least some specialized neoblasts are likely clonogenic. On the basis of these findings, we propose a model for neoblast pluripotency in which neoblasts can undergo specialization during the cell cycle without loss of potency.


Asunto(s)
Planarias , Animales , Ciclo Celular , Diferenciación Celular , División Celular , Células Madre
6.
Nat Commun ; 8(1): 1260, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084955

RESUMEN

Positional information is required for animal regeneration, yet how it is harbored in adult tissues is poorly understood. In planarians, positional control genes (PCGs) control regeneration outcomes and are regionally expressed predominately in the musculature. Acoels are early diverging bilaterally symmetric animals, having separated from other bilaterians > 550 million years ago. Here, we find that PCGs in the acoel Hofstenia miamia are expressed together and specifically in a primary differentiated cell type: muscle. The vast majority of Hofstenia muscle cells in regions tested express PCGs, suggesting positional information is a major feature of muscle. PCG expression domains are dynamic in muscle after injury, consistent with known PCG roles in guiding regeneration. These data demonstrate an instructive positional role for Hofstenia muscle and this similarity with planarians suggests mesodermal muscle originated at the base of the Bilateria not only for contraction, but also as the source of positional information guiding regeneration.


Asunto(s)
Tipificación del Cuerpo/fisiología , Invertebrados/citología , Invertebrados/fisiología , Músculos/fisiología , Regeneración/fisiología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular , Regulación de la Expresión Génica , Hibridación Fluorescente in Situ , Invertebrados/genética , Células Musculares/fisiología , Proteínas Musculares/genética , Músculos/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Tropomiosina/genética
7.
Evodevo ; 4(1): 10, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23552511

RESUMEN

BACKGROUND: In most species of aphid, female nymphs develop into either sexual or asexual adults depending on the length of the photoperiod to which their mothers were exposed. The progeny of these sexual and asexual females, in turn, develop in dramatically different ways. The fertilized oocytes of sexual females begin embryogenesis after being deposited on leaves (oviparous development) while the oocytes of asexual females complete embryogenesis within the mother (viviparous development). Compared with oviparous development, viviparous development involves a smaller transient oocyte surrounded by fewer somatic epithelial cells and a smaller early embryo that comprises fewer cells. To investigate whether patterning mechanisms differ between the earliest stages of the oviparous and viviparous modes of pea aphid development, we examined the expression of pea aphid orthologs of genes known to specify embryonic termini in other insects. RESULTS: Here we show that pea aphid oviparous ovaries express torso-like in somatic posterior follicle cells and activate ERK MAP kinase at the posterior of the oocyte. In addition to suggesting that some posterior features of the terminal system are evolutionarily conserved, our detection of activated ERK in the oocyte, rather than in the embryo, suggests that pea aphids may transduce the terminal signal using a mechanism distinct from the one used in Drosophila. In contrast with oviparous development, the pea aphid version of the terminal system does not appear to be used during viviparous development, since we did not detect expression of torso-like in the somatic epithelial cells that surround either the oocyte or the blastoderm embryo and we did not observe restricted activated ERK in the oocyte. CONCLUSIONS: We suggest that while oviparous oocytes and embryos may specify posterior fate through an aphid terminal system, viviparous oocytes and embryos employ a different mechanism, perhaps one that does not rely on an interaction between the oocyte and surrounding somatic cells. Together, these observations provide a striking example of a difference in the fundamental events of early development that is both environmentally induced and encoded by the same genome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA