Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 173(7): 1609-1621.e15, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754821

RESUMEN

Diverse biological systems utilize fluctuations ("noise") in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that-after a noise-driven event-human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noise to stabilize HIV's commitment decision, and a noise-suppression molecule promotes stabilization. This feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.


Asunto(s)
Retroalimentación Fisiológica , VIH-1/metabolismo , ARN Mensajero/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , VIH-1/genética , Humanos , Células Jurkat , Modelos Biológicos , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Imagen de Lapso de Tiempo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
2.
Cell ; 160(5): 990-1001, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723172

RESUMEN

Biological circuits can be controlled by two general schemes: environmental sensing or autonomous programs. For viruses such as HIV, the prevailing hypothesis is that latent infection is controlled by cellular state (i.e., environment), with latency simply an epiphenomenon of infected cells transitioning from an activated to resting state. However, we find that HIV expression persists despite the activated-to-resting cellular transition. Mathematical modeling indicates that HIV's Tat positive-feedback circuitry enables this persistence and strongly controls latency. To overcome the inherent crosstalk between viral circuitry and cellular activation and to directly test this hypothesis, we synthetically decouple viral dependence on cellular environment from viral transcription. These circuits enable control of viral transcription without cellular activation and show that Tat feedback is sufficient to regulate latency independent of cellular activation. Overall, synthetic reconstruction demonstrates that a largely autonomous, viral-encoded program underlies HIV latency­potentially explaining why cell-targeted latency-reversing agents exhibit incomplete penetrance.


Asunto(s)
VIH/fisiología , Latencia del Virus , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Humanos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
3.
J Virol ; 96(7): e0151621, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35297669

RESUMEN

ADP-ribosylation is a highly dynamic posttranslational modification frequently studied in stress response pathways with recent attention given to its role in response to viral infection. Notably, the alphaviruses encode catalytically active macrodomains capable of ADP-ribosylhydrolase (ARH) activities, implying a role in remodeling the cellular ADP-ribosylome. This report decouples mono- and poly-ARH contributions to macrodomain function using a newly engineered Sindbis virus (SINV) mutant with attenuated poly-ARH activity. Our findings indicate that viral poly-ARH activity is uniquely required for high titer replication in mammalian systems. Despite translating incoming genomic RNA as efficiently as WT virus, mutant viruses have a reduced capacity to establish productive infection, offering a more complete understanding of the kinetics and role of the alphavirus macrodomain with important implications for broader ADP-ribosyltransferase biology. IMPORTANCE Viral macrodomains have drawn attention in recent years due to their high degree of conservation in several virus families (e.g., coronaviruses and alphaviruses) and their potential druggability. These domains erase mono- or poly-ADP-ribose, posttranslational modifications written by host poly-ADP-ribose polymerase (PARP) proteins, from undetermined host or viral proteins to enhance replication. Prior work determined that efficient alphavirus replication requires catalytically active macrodomains; however, which form of the modification requires removal and from which protein(s) had not been determined. Here, we present evidence for the specific requirement of poly-ARH activity to ensure efficient productive infection and virus replication.


Asunto(s)
Coronavirus , Hidrolasas , ARN Viral , Virus Sindbis , Animales , Coronavirus/genética , Hidrolasas/metabolismo , Mamíferos/genética , Poli Adenosina Difosfato Ribosa/metabolismo , ARN Viral/genética , Virus Sindbis/enzimología , Virus Sindbis/genética , Replicación Viral
4.
PLoS Pathog ; 15(5): e1007798, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31116799

RESUMEN

Cellular antiviral programs encode molecules capable of targeting multiple steps in the virus lifecycle. Zinc-finger antiviral protein (ZAP) is a central and general regulator of antiviral activity that targets pathogen mRNA stability and translation. ZAP is diffusely cytoplasmic, but upon infection ZAP is targeted to particular cytoplasmic structures, termed stress granules (SGs). However, it remains unclear if ZAP's antiviral activity correlates with SG localization, and what molecular cues are required to induce this localization event. Here, we use Sindbis virus (SINV) as a model infection and find that ZAP's localization to SGs can be transient. Sometimes no apparent viral infection follows ZAP SG localization but ZAP SG localization always precedes accumulation of SINV non-structural protein, suggesting virus replication processes trigger SG formation and ZAP recruitment. Data from single-molecule RNA FISH corroborates this finding as the majority of cells with ZAP localization in SGs contain low levels of viral RNA. Furthermore, ZAP recruitment to SGs occurred in ZAP-expressing cells when co-cultured with cells replicating full-length SINV, but not when co-cultured with cells replicating a SINV replicon. ZAP recruitment to SGs is functionally important as a panel of alanine ZAP mutants indicate that the anti-SINV activity is correlated with ZAP's ability to localize to SGs. As ZAP is a central component of the cellular antiviral programs, these data provide further evidence that SGs are an important cytoplasmic antiviral hub. These findings provide insight into how antiviral components are regulated upon virus infection to inhibit virus spread.


Asunto(s)
Infecciones por Alphavirus/prevención & control , Antivirales/farmacología , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ARN/farmacología , Virus Sindbis/patogenicidad , Estrés Fisiológico , Replicación Viral/efectos de los fármacos , Infecciones por Alphavirus/metabolismo , Infecciones por Alphavirus/virología , Antivirales/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/virología , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Osteosarcoma/virología , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Tumorales Cultivadas
5.
PLoS Biol ; 15(10): e2000841, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29045398

RESUMEN

Fundamental to biological decision-making is the ability to generate bimodal expression patterns where 2 alternate expression states simultaneously exist. Here, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV's fate decision between active replication and viral latency. We find that the HIV transactivator of transcription (Tat) protein manipulates the intrinsic toggling of HIV's promoter, the long terminal repeat (LTR), to generate bimodal ON-OFF expression and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-length virus. Strikingly, computational analysis indicates that the Tat circuit's noncooperative "nonlatching" feedback architecture is optimized to slow the promoter's toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that nonlatching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV's decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.


Asunto(s)
Retroalimentación Fisiológica , Regulación Viral de la Expresión Génica/genética , VIH-1/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Algoritmos , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Infecciones por VIH/virología , Duplicado del Terminal Largo de VIH/genética , VIH-1/fisiología , Humanos , Células Jurkat , Microscopía Confocal , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Análisis de la Célula Individual/métodos , Procesos Estocásticos , Transcripción Genética , Latencia del Virus
6.
Proc Natl Acad Sci U S A ; 109(43): 17454-9, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23064634

RESUMEN

Gene expression occurs either as an episodic process, characterized by pulsatile bursts, or as a constitutive process, characterized by a Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy to analyze 8,000 individual human genomic loci and find that at virtually all loci, episodic bursting--as opposed to constitutive expression--is the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both the frequency and size of the transcriptional bursts varies equally across the human genome, independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, whereas stronger expression loci modulate burst size to increase activity. Transcriptional activators such as trichostatin A (TSA) and tumor necrosis factor α (TNF) only modulate burst size and frequency along a constrained trend line governed by the promoter. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.


Asunto(s)
Genoma Humano , Transcripción Genética , Expresión Génica , Vectores Genéticos , Humanos , Ácidos Hidroxámicos/farmacología , Lentivirus/genética , Microscopía Fluorescente , Regiones Promotoras Genéticas , Transcripción Genética/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
7.
Mol Syst Biol ; 8: 607, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22929617

RESUMEN

Within individual cells, two molecular processes have been implicated as sources of noise in gene expression: (i) Poisson fluctuations in mRNA abundance arising from random birth and death of individual mRNA transcripts or (ii) promoter fluctuations arising from stochastic promoter transitions between different transcriptional states. Steady-state measurements of variance in protein levels are insufficient to discriminate between these two mechanisms, and mRNA single-molecule fluorescence in situ hybridization (smFISH) is challenging when cellular mRNA concentrations are high. Here, we present a perturbation method that discriminates mRNA birth/death fluctuations from promoter fluctuations by measuring transient changes in protein variance and that can operate in the regime of high molecular numbers. Conceptually, the method exploits the fact that transcriptional blockage results in more rapid increases in protein variability when mRNA birth/death fluctuations dominate over promoter fluctuations. We experimentally demonstrate the utility of this perturbation approach in the HIV-1 model system. Our results support promoter fluctuations as the primary noise source in HIV-1 expression. This study illustrates a relatively simple method that complements mRNA smFISH hybridization and can be used with existing GFP-tagged libraries to include or exclude alternate sources of noise in gene expression.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Expresión Génica/fisiología , Regiones Promotoras Genéticas/fisiología , Proteínas/metabolismo , ARN Mensajero/metabolismo , Algoritmos , Cicloheximida/farmacología , Dactinomicina/farmacología , Flavonoides/farmacología , Citometría de Flujo , Perfilación de la Expresión Génica/estadística & datos numéricos , Variación Genética , Proteínas Fluorescentes Verdes/metabolismo , VIH-1/genética , VIH-1/metabolismo , Humanos , Hibridación Fluorescente in Situ , Modelos Genéticos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Piperidinas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas/genética , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética
8.
Methods ; 53(1): 68-77, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21167940

RESUMEN

Upon infection of a CD4(+) T cell, HIV-1 appears to 'choose' between two alternate fates: active replication or a long-lived dormant state termed proviral latency. A transcriptional positive-feedback loop generated by the HIV-1 Tat protein appears sufficient to mediate this decision. Here, we describe a coupled wet-lab and computational approach that uses mathematical modeling and live-cell time-lapse microscopy to map the architecture of the HIV-1 Tat transcriptional regulatory circuit and generate predictive models of HIV-1 latency. This approach provided the first characterization of a 'decision-making' circuit that lacks bistability and instead exploits stochastic fluctuations in cellular molecules (i.e. noise) to generate a decision between an on or off transcriptional state.


Asunto(s)
Retroalimentación Fisiológica , Regulación Viral de la Expresión Génica , VIH-1/fisiología , Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Línea Celular , Simulación por Computador , Vectores Genéticos , VIH-1/genética , Humanos , Lentivirus/genética , Modelos Biológicos , Procesos Estocásticos , Imagen de Lapso de Tiempo , Latencia del Virus
10.
Science ; 374(6571): 1099-1106, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34648371

RESUMEN

Molecular virology tools are critical for basic studies of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. Experimental systems that do not rely on viruses capable of spread are needed for potential use in lower-containment settings. In this work, we use a yeast-based reverse genetics system to develop spike-deleted SARS-CoV-2 self-replicating RNAs. These noninfectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate replicon delivery particles for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and viral variant characterization.


Asunto(s)
ARN Viral/genética , Replicón/fisiología , SARS-CoV-2/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antivirales/farmacología , Línea Celular , Humanos , Interferones/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Plásmidos , ARN Viral/metabolismo , Replicón/genética , Genética Inversa , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Saccharomyces cerevisiae/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Pseudotipado Viral , Virión/genética , Virión/fisiología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA