Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood ; 137(7): 994-999, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32915956
2.
J Exp Clin Cancer Res ; 43(1): 10, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167224

RESUMEN

BACKGROUND: The variability in responses to neoadjuvant treatment with anti-HER2 antibodies prompts to personalized clinical management and the development of innovative treatment strategies. Tumor-infiltrating Natural Killer (TI-NK) cells can predict the efficacy of HER2-targeted antibodies independently from clinicopathological factors in primary HER2-positive breast cancer patients. Understanding the mechanism/s underlying this association would contribute to optimizing patient stratification and provide the rationale for combinatorial approaches with immunotherapy. METHODS: We sought to uncover processes enriched in NK cell-infiltrated tumors as compared to NK cell-desert tumors by microarray analysis. Findings were validated in clinical trial-derived transcriptomic data. In vitro and in vivo preclinical models were used for mechanistic studies. Findings were analysed in clinical samples (tumor and serum) from breast cancer patients. RESULTS: NK cell-infiltrated tumors were enriched in CCL5/IFNG-CXCL9/10 transcripts. In multivariate logistic regression analysis, IFNG levels underlie the association between TI-NK cells and pathological complete response to neoadjuvant treatment with trastuzumab. Mechanistically, the production of IFN-É£ by CD16+ NK cells triggered the secretion of CXCL9/10 from cancer cells. This effect was associated to tumor growth control and the conversion of CD16 into CD16-CD103+ NK cells in humanized in vivo models. In human breast tumors, the CD16 and CD103 markers identified lineage-related NK cell subpopulations capable of producing CCL5 and IFN-É£, which correlated with tissue-resident CD8+ T cells. Finally, an early increase in serum CCL5/CXCL9 levels identified patients with NK cell-rich tumors showing good responses to anti-HER2 antibody-based neoadjuvant treatment. CONCLUSIONS: This study identifies specialized NK cell subsets as the source of IFN-É£ influencing the clinical efficacy of anti-HER2 antibodies. It also reveals the potential of serum CCL5/CXCL9 as biomarkers for identifying patients with NK cell-rich tumors and favorable responses to anti-HER2 antibody-based neoadjuvant treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Terapia Neoadyuvante , Linfocitos T CD8-positivos , Receptor ErbB-2 , Trastuzumab/farmacología , Células Asesinas Naturales , Resultado del Tratamiento , Quimiocina CXCL9/uso terapéutico , Quimiocina CCL5
3.
Front Physiol ; 13: 836858, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399272

RESUMEN

Introduction: The Tokyo 2021 Olympic Games was anticipated to expose athletes to the most challenging climatic conditions experienced in the history of the modern Olympic Games. This study documents strategies executed by Australian endurance athletes during the team holding camp and Olympic Games experiences, including (1) baseline physiological data, training data, and heat acclimation/acclimatization practices; (2) pre- and in-race cooling and nutritional strategies, and (3) Olympic Games race performance data. Methods: Six athletes (three males, three females; age 24 ± 4 years; VO2max 63.2 ± 8.7 mL⋅kg-1⋅min-1; sum of 7 skinfolds 53.1 ± 23.4 mm) were observed prior to and during the team holding camp held in Cairns, QLD, Australia. Athletes completed 6-7 weeks of intermittent heat acclimation training, utilizing a combination of 2-4 passive and active acclimation sessions per week. Active acclimation was systematically increased via exposure time, exercise intensity, temperature, and humidity. In the team holding camp, athletes undertook a further 23 heat acclimatization training sessions over 18 days in a continuous fashion. Hyperhydration (using sodium and glycerol osmolytes), and internal and external pre-and in-race cooling methods were also utilized. A low energy availability intervention was implemented with two athletes, as a strategy to periodize ideal race body composition. Race performance data and environmental conditions from the 2021 Olympic Games were also documented. Results: The highest values for aerobic capacity were 63.6 mL⋅kg-1⋅min-1 for female race walkers and 73.7 mL⋅kg-1⋅min-1 for males. Training volume for the six athletes was the highest in the second week of the team holding camp, and training intensity was lowest in the first week of the team holding camp. Performance outcomes included 6th place in the women's 20 km event (1:30:39), which was within 2% of her 20 km personal best time, and 8th place in the men's 50 km event (3:52:01), which was a personal best performance time. Conclusion: Periodized training, heat acclimation/acclimatization, cooling and nutritional strategies study may have contributed to the race outcomes in Olympic Games held hot, humid conditions, for the race walkers within this observational study.

4.
HLA ; 100(2): 119-132, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35439359

RESUMEN

The phenotypic identification of different NK cell subsets allows more in-depth characterization of KIR repertoire and function, which are of potential interest in KIR and disease association studies. KIR genes are highly polymorphic, but a great homology exists among the various sequences and few monoclonal antibodies (mAbs) specifically recognize a single KIR. This is the case of HP-DM1 which was demonstrated by analysis of cell transfectants and epitope mapping to be exclusively KIR2DL1-specific, covering all allotypes identified to date, except for KIR2DL1*022 and *020, and also to react with KIR2DS1*013. Here, we compared in immunofluorescence analyses the staining of HP-DM1 with other available mAbs to precisely identify KIR2DL1+ NK cells in potential donors for αßT/B-depleted haplo-HSCT, with known KIR genotype. HP-DM1 mAb was used in combination with EB6 or 11PB6 (anti-KIR2DL1/S1 and anti-KIR2DL3*005), 143211 (anti-KIR2DL1/S5), and HP-MA4 (anti-KIR2DL1/S1/S3/S5) mAbs, allowing the accurate identification of different KIR+ NK cell subsets. These phenotypic evaluations appeared useful to dissect the expression pattern of various KIR2D in NK cells from KIR2DL3*005+ individuals, particularly if KIR2DS1 is present. HP-DM1 mAb remarkably refined NK cell phenotyping of donors carrying KIR2DS5, either in the centromeric or telomeric region. Functional assays with KIR2DL1+ /S1+ /S5+ NK cells confirmed that only HP-DM1 exclusively reacts with KIR2DL1. Finally, we demonstrated that HP-DM1 mAb blocked KIR2DL1 recognition of C2+ HLA-C. Altogether, the data support that HP-DM1 is a unique reagent valuable for characterizing KIR+ NK cell subsets.


Asunto(s)
Anticuerpos Monoclonales , Antígenos HLA-C , Alelos , Anticuerpos Monoclonales/metabolismo , Genes MHC Clase I , Humanos , Células Asesinas Naturales , Receptores KIR , Receptores KIR2DL1/genética
5.
Cancer Immunol Res ; 9(12): 1476-1490, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34580116

RESUMEN

Enhancing natural killer (NK) cell-based cancer immunotherapy by overcoming immunosuppression is an area of intensive research. Here, we have demonstrated that the anti-CD137 agonist urelumab can overcome TGFß-mediated inhibition of human NK-cell proliferation and antitumor function. Transcriptomic, immunophenotypic, and functional analyses showed that CD137 costimulation modified the transcriptional program induced by TGFß on human NK cells by rescuing their proliferation in response to IL2, preserving their expression of activating receptors (NKG2D) and effector molecules (granzyme B, IFNγ) while allowing the acquisition of tumor-homing/retention features (CXCR3, CD103). Activated NK cells cultured in the presence of TGFß1 and CD137 agonist recovered CCL5 and IFNγ secretion and showed enhanced direct and antibody-dependent cytotoxicity upon restimulation with cancer cells. Trastuzumab treatment of fresh breast carcinoma-derived multicellular cultures induced CD137 expression on tumor-infiltrating CD16+ NK cells, enabling the action of urelumab, which fostered tumor-infiltrating NK cells and recapitulated the enhancement of CCL5 and IFNγ production. Bioinformatic analysis pointed to IFNG as the driver of the association between NK cells and clinical response to trastuzumab in patients with HER2-positive primary breast cancer, highlighting the translational relevance of the CD137 costimulatory axis for enhancing IFNγ production. Our data reveals CD137 as a targetable checkpoint for overturning TGFß constraints on NK-cell antitumor responses.


Asunto(s)
Expresión Génica/genética , Inmunoterapia/métodos , Células Asesinas Naturales/metabolismo , Análisis por Micromatrices/métodos , Neoplasias/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Animales , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Humanos
6.
Curr Med Chem ; 27(15): 2402-2448, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30398102

RESUMEN

The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.


Asunto(s)
Neoplasias , Linfocitos T , Biomarcadores , Humanos , Inmunoterapia , Receptor de Muerte Celular Programada 1
7.
Melanoma Res ; 29(2): 145-150, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30451787

RESUMEN

Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine, whose role in melanoma is controversial. Although high-dose TNF-α is approved for the treatment of patients with in transit-metastatic melanoma confined to the limb, diverse preclinical models of melanoma have shown that TNF-α can induce cell invasion. Biomarkers that can differentiate between the dual role of TNF-α are needed. TRAF2 is critical to TNF receptor-induced activation of nuclear factor-κB (NF-κB), allowing shifting from death to survival-signaling cascades. The large immunophilin FKBP51 acts as a scaffold and catalyst in the IκB kinase complex assembly and activation. Here, using microscopy and an electrophoretic mobility-shift assay, we provide further evidence in support of the essential role of FKBP51 in sustaining the TNF-α NF-κB signaling in melanoma. Through the cross-linking reaction with the chemical linker disuccinimidyl glutarate, we show that a direct interaction occurs between FKBP51 and TRAF2 in melanoma cells. Immunohistochemistry of tumor samples from 24 patients with cutaneous melanomas showed a correlation between the expressions of the two proteins. Given the association of FKBP51 and TRAF2 with TNF-α-induced NF-κB signaling and their correlation in tumor samples, we propose that the two proteins can be exploited as useful markers for the identification of those melanoma tumors that can benefit from TNF-α inhibition. Future studies will address this hypothesis.


Asunto(s)
Biomarcadores/química , Melanoma/genética , Neoplasias Cutáneas/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Línea Celular Tumoral , Humanos , Melanoma/metabolismo , Melanoma/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
8.
Cell Death Discov ; 5: 137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31583120

RESUMEN

Gliomas aberrantly express programmed cell death ligand-1 (PD-L1), which has a pivotal role in immunoevasion. The splicing isoform of FKBP5, termed FKBP51s, is a PD-L1 foldase, assisting the immune checkpoint molecule in maturation and expression on the plasma membrane. The concept that PD-L1 supports tumor-intrinsic properties is increasingly emerging. The aim of the present work was to confirm the pro-tumoral effect of PD-L1 on human glioma cell survival, stemness capacity and resistance, and to address the issue of whether, by targeting its foldase either chemically or by silencing, the aggressive tumor features could be attenuated. PD-L1-depleted glioma cells have a reduced threshold for apoptosis, while PD-L1 forced expression increases resistance. Similar results were obtained with FKBP51s modulation. The ability of PD-L1 to counteract cell death was hampered by FKBP51s silencing. PD-L1 expression was particularly high in glioma cells with a cancer-stem-cell profile. Moreover, PD-L1 sustained the spheroid formation capability of glioma cells. Targeting of FKBP51s by small-interfering RNA (siRNA) or the specific inhibitor SAFit2, reduced the number of formed spheroids, along with PD-L1 expression. Finally, in an orthotopic mouse model of glioblastoma, daily treatment with SAFit2 significantly reduced tumor PD-L1 expression, and tumor growth. In treated mice, caspase-3 activation and reduced vimentin expression were observed in excised tumors. In conclusion, targeting of FKBP51s hampers PD-L1 and its pro-tumoral properties, thereby affecting the self-renewal and growth capacities of glioblastoma cells in vitro and in vivo.

9.
Oncotarget ; 8(40): 68291-68304, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978117

RESUMEN

BACKGROUND: FKBP51 is a co-chaperone with isomerase activity, abundantly expressed in glioma. We previously identified a spliced isoform (FKBP51s) and highlighted a role for this protein in the upregulation of Programmed Death Ligand 1 (PD-L1) expression in melanoma. Because gliomas can express PD-L1 causing a defective host anti-tumoral immunity, we investigated whether FKBP51s was expressed in glioma and played a role in PD-L1 regulation in this tumour. METHODS: We used D54 and U251 glioblastoma cell lines that constitutively expressed PD-L1. FKBP51s was measured by immunoblot, flow cytometry and microscopy. In patient tumours, IHC and qPCR were used to measure protein and mRNA levels respectively. FKBP51s depletion was achieved by siRNAs, and its enzymatic function was inhibited using selective inhibitors (SAFit). We investigated protein maturation using N-glycosidase and cell fractionation approaches. RESULTS: FKBP51s was expressed at high levels in glioma cells. Glycosylated-PD-L1 was increased and reduced by FKBP51s overexpression or silencing, respectively. Naïve PD-L1 was found in the endoplasmic reticulum (ER) of glioma cells complexed with FKBP51s, whereas the glycosylated form was measured in the Golgi apparatus. SAFit reduced PD-L1 levels (constitutively expressed and ionizing radiation-induced). SAFit reduced cell death of PBMC co-cultured with glioma. CONCLUSIONS: Here we addressed the mechanism of post-translational regulation of PD-L1 protein in glioma. FKBP51s upregulated PD-L1 expression on the plasma membrane by catalysing the protein folding required for subsequent glycosylation. Inhibition of FKBP51s isomerase activity by SAFit decreased PD-L1 levels. These findings suggest that FKBP51s is a potential target of immunomodulatory strategies for glioblastoma treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA