Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 578(7794): 290-295, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025034

RESUMEN

Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.


Asunto(s)
Células Endoteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mecanotransducción Celular , Glicoproteínas de Membrana/metabolismo , Estrés Mecánico , Animales , Aterosclerosis/metabolismo , Femenino , Integrinas/metabolismo , Ratones , Neuropilina-1/metabolismo , Docilidad , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35024764

RESUMEN

The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology. eIF6-depleted endothelial cells, under basal conditions, exhibit unchanged nascent protein synthesis, polysome profiles, and cytoskeleton protein expression, with minimal effects on ribosomal biogenesis. In contrast, using traction force and atomic force microscopy, we show that loss of eIF6 leads to reduced stiffness and force generation accompanied by cytoskeletal and focal adhesion defects. Mechanistically, we show that eIF6 is required for the correct spatial mechanoactivation of ERK1/2 via stabilization of an eIF6-RACK1-ERK1/2-FAK mechanocomplex, which is necessary for force-induced remodeling. These results reveal an extratranslational function for eIF6 and a novel paradigm for how mechanotransduction, the cellular cytoskeleton, and protein translation constituents are linked.


Asunto(s)
Células Endoteliales/metabolismo , Mecanotransducción Celular , Factores de Iniciación de Péptidos/metabolismo , Animales , Fenómenos Biomecánicos , Bovinos , Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Biosíntesis de Proteínas , Ribosomas/metabolismo
4.
J Biol Chem ; 285(49): 37944-52, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20876530

RESUMEN

The heptapeptide-nucleotide microcin C (McC) is a potent inhibitor of enteric bacteria growth. Inside a sensitive cell, McC is processed by aminopeptidases, which release a nonhydrolyzable aspartyl-adenylate, a strong inhibitor of aspartyl-tRNA synthetase. The mccABCDE operon is sufficient for McC production and resistance of the producing cell to McC. An additional gene, mccF, which is adjacent to but not part of the mccABCDE operon, also provides resistance to exogenous McC. MccF is similar to Escherichia coli LdcA, an L,D-carboxypeptidase whose substrate is monomeric murotetrapeptide L-Ala-D-Glu-meso-A(2)pm-D-Ala or its UDP-activated murein precursor. The mechanism by which MccF provides McC resistance remained unknown. Here, we show that MccF detoxifies both intact and processed McC by cleaving an amide bond between the C-terminal aspartate and the nucleotide moiety. MccF also cleaves the same bond in nonhydrolyzable aminoacyl sulfamoyl adenosines containing aspartyl, glutamyl, and, to a lesser extent, seryl aminoacyl moieties but is ineffective against other aminoacyl adenylates.


Asunto(s)
Bacteriocinas/farmacología , Farmacorresistencia Bacteriana/fisiología , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Péptido Hidrolasas/metabolismo , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Bacteriocinas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Operón/fisiología , Péptido Hidrolasas/genética , Peptidoglicano/genética , Peptidoglicano/metabolismo
5.
Sci Adv ; 7(28)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34244146

RESUMEN

The response of endothelial cells to mechanical forces is a critical determinant of vascular health. Vascular pathologies, such as atherosclerosis, characterized by abnormal mechanical forces are frequently accompanied by endothelial-to-mesenchymal transition (EndMT). However, how forces affect the mechanotransduction pathways controlling cellular plasticity, inflammation, and, ultimately, vessel pathology is poorly understood. Here, we identify a mechanoreceptor that is sui generis for EndMT and unveil a molecular Alk5-Shc pathway that leads to EndMT and atherosclerosis. Depletion of Alk5 abrogates shear stress-induced EndMT responses, and genetic targeting of endothelial Shc reduces EndMT and atherosclerosis in areas of disturbed flow. Tensional force and reconstitution experiments reveal a mechanosensory function for Alk5 in EndMT signaling that is unique and independent of other mechanosensors. Our findings are of fundamental importance for understanding how mechanical forces regulate biochemical signaling, cell plasticity, and vascular disease.

6.
Front Cell Dev Biol ; 8: 34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32083081

RESUMEN

The cardiovascular system can sense and adapt to changes in mechanical stimuli by remodeling the physical properties of the heart and blood vessels in order to maintain homeostasis. Imbalances in mechanical forces and/or impaired sensing are now not only implicated but are, in some cases, considered to be drivers for the development and progression of cardiovascular disease. There is now growing evidence to highlight the role of mechanical forces in the regulation of protein translation pathways. The canonical mechanism of protein synthesis typically involves transcription and translation. Protein translation occurs globally throughout the cell to maintain general function but localized protein synthesis allows for precise spatiotemporal control of protein translation. This Review will cover studies on the role of biomechanical stress -induced translational control in the heart (often in the context of physiological and pathological hypertrophy). We will also discuss the much less studied effects of mechanical forces in regulating protein translation in the vasculature. Understanding how the mechanical environment influences protein translational mechanisms in the cardiovascular system, will help to inform disease pathogenesis and potential areas of therapeutic intervention.

7.
Cells ; 9(3)2020 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156009

RESUMEN

Mechanical forces acting on biological systems, at both the macroscopic and microscopic levels, play an important part in shaping cellular phenotypes. There is a growing realization that biomolecules that respond to force directly applied to them, or via mechano-sensitive signalling pathways, can produce profound changes to not only transcriptional pathways, but also in protein translation. Forces naturally occurring at the molecular level can impact the rate at which the bacterial ribosome translates messenger RNA (mRNA) transcripts and influence processes such as co-translational folding of a nascent protein as it exits the ribosome. In eukaryotes, force can also be transduced at the cellular level by the cytoskeleton, the cell's internal filamentous network. The cytoskeleton closely associates with components of the translational machinery such as ribosomes and elongation factors and, as such, is a crucial determinant of localized protein translation. In this review we will give (1) a brief overview of protein translation in bacteria and eukaryotes and then discuss (2) how mechanical forces are directly involved with ribosomes during active protein synthesis and (3) how eukaryotic ribosomes and other protein translation machinery intimately associates with the mechanosensitive cytoskeleton network.


Asunto(s)
Células Eucariotas/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Humanos , Fenotipo , ARN Mensajero/genética , Ribosomas/genética
8.
Sci Rep ; 7: 41223, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28120882

RESUMEN

Fibronectin (FN) assembly and fibrillogenesis are critically important in both development and the adult organism, but their importance in vascular functions is not fully understood. Here we identify a novel pathway by which haemodynamic forces regulate FN assembly and fibrillogenesis during vascular remodelling. Induction of disturbed shear stress in vivo and in vitro resulted in complex FN fibril assembly that was dependent on the mechanosensor PECAM. Loss of PECAM also inhibited the cell-intrinsic ability to remodel FN. Gain- and loss-of-function experiments revealed that PECAM-dependent RhoA activation is required for FN assembly. Furthermore, PECAM-/- mice exhibited reduced levels of active ß1 integrin that were responsible for reduced RhoA activation and downstream FN assembly. These data identify a new pathway by which endothelial mechanotransduction regulates FN assembly and flow-mediated vascular remodelling.


Asunto(s)
Arterias Carótidas/metabolismo , Fibronectinas/metabolismo , Hemodinámica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Animales , Arterias Carótidas/patología , Arterias Carótidas/fisiología , Bovinos , Células Cultivadas , Integrina beta1/metabolismo , Ratones , Ratones Endogámicos C57BL , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Remodelación Vascular , Proteína de Unión al GTP rhoA/metabolismo
9.
PLoS One ; 9(10): e109325, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25296172

RESUMEN

A naturally-occurring fragment of tyrosyl-tRNA synthetase (TyrRS) has been shown in higher eukaryotes to 'moonlight' as a pro-angiogenic cytokine in addition to its primary role in protein translation. Pro-angiogenic cytokines have previously been proposed to be promising therapeutic mechanisms for the treatment of myocardial infarction. Here, we show that systemic delivery of the natural fragment of TyRS, mini-TyrRS, improves heart function in mice after myocardial infarction. This improvement is associated with reduced formation of scar tissue, increased angiogenesis of cardiac capillaries, recruitment of c-kitpos cells and proliferation of myocardial fibroblasts. This work demonstrates that mini-TyrRS has beneficial effects on cardiac repair and regeneration and offers support for the notion that elucidation of the ever expanding repertoire of noncanonical functions of aminoacyl tRNA synthetases offers unique opportunities for development of novel therapeutics.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Corazón/efectos de los fármacos , Corazón/fisiopatología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Capilares/efectos de los fármacos , Capilares/fisiopatología , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Neovascularización Fisiológica/efectos de los fármacos , Fragmentos de Péptidos/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/metabolismo
10.
Nat Commun ; 5: 3984, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24917553

RESUMEN

Endothelial cells (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force into biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties. We demonstrate that the ECM influences EC response to tension on PECAM-1. ECs adherent on collagen display divergent stiffening and focal adhesion growth compared with ECs on fibronectin. This is because of protein kinase A (PKA)-dependent serine phosphorylation and inactivation of RhoA. PKA signalling regulates focal adhesion dynamics and EC compliance in response to shear stress in vitro and in vivo. Our study identifies an ECM-specific, mechanosensitive signalling pathway that regulates EC compliance and may serve as an atheroprotective mechanism that maintains blood vessel integrity in vivo.


Asunto(s)
Aorta/fisiología , Endotelio Vascular/fisiología , Matriz Extracelular/fisiología , Hemodinámica , Animales , Aorta/citología , Aorta/enzimología , Aorta/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Matriz Extracelular/enzimología , Matriz Extracelular/metabolismo , Adhesiones Focales , Masculino , Ratones , Ratones Endogámicos C57BL , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
11.
Nat Commun ; 4: 1417, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23361008

RESUMEN

Leucyl-tRNA synthetases (LeuRSs) have an essential role in translation and are promising targets for antibiotic development. Agrocin 84 is a LeuRS inhibitor produced by the biocontrol agent Agrobacterium radiobacter K84 that targets pathogenic strains of A. tumefaciens, the causative agent of plant tumours. Agrocin 84 acts as a molecular Trojan horse and is processed inside the pathogen into a toxic moiety (TM84). Here we show using crystal structure, thermodynamic and kinetic analyses, that this natural antibiotic employs a unique and previously undescribed mechanism to inhibit LeuRS. TM84 requires tRNA(Leu) for tight binding to the LeuRS synthetic active site, unlike any previously reported inhibitors. TM84 traps the enzyme-tRNA complex in a novel 'aminoacylation-like' conformation, forming novel interactions with the KMSKS loop and the tRNA 3'-end. Our findings reveal an intriguing tRNA-dependent inhibition mechanism that may confer a distinct evolutionary advantage in vivo and inform future rational antibiotic design.


Asunto(s)
Nucleótidos de Adenina/farmacología , Agrobacterium tumefaciens/enzimología , Agentes de Control Biológico , Leucina-ARNt Ligasa/antagonistas & inhibidores , Tumores de Planta/microbiología , ARN de Planta/metabolismo , ARN de Transferencia/metabolismo , Nucleótidos de Adenina/química , Agrobacterium tumefaciens/efectos de los fármacos , Aminoacilación/efectos de los fármacos , Calorimetría , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/metabolismo , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Planta/química , ARN de Transferencia/química
12.
Vascul Pharmacol ; 52(1-2): 21-6, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19962454

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that join amino acids to tRNAs. Although they are housekeeping enzymes essential for protein synthesis, aaRSs are now known to participate in a wide variety of functions, including transcription, translation, splicing, inflammation, angiogenesis and apoptosis. In eukaryotes, the functional expansion of aaRSs is closely linked to evolutionary advantages conferred by recruitment into protein complexes as well as various structural adaptations. The elucidation and understanding of the diverse functions of aaRSs is a major goal of current and future research. These investigations will undoubtedly provide some of the most fundamental understanding of how and possibly why synthetases became so tightly involved in such a vast array of cell signaling pathways.


Asunto(s)
Aminoacil-ARNt Sintetasas/fisiología , Biosíntesis de Proteínas/fisiología , ARN de Transferencia Aminoácido-Específico/fisiología , Transducción de Señal/fisiología , Animales , Humanos
13.
Proc Natl Acad Sci U S A ; 103(23): 8846-51, 2006 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-16731618

RESUMEN

Agrobacterium radiobacter K84, used worldwide to biocontrol crown gall disease caused by Agrobacterium tumefaciens, produces an antiagrobacterial compound called agrocin 84. We report the nucleotide sequence of pAgK84, a 44.42-kb plasmid coding for production of this disubstituted adenine nucleotide antibiotic. pAgK84 encodes 36 ORFs, 17 of which (agn) code for synthesis of or immunity to agrocin 84. Two genes, agnB2 and agnA, encode aminoacyl tRNA synthetase homologues. We have shown that the toxic moiety of agrocin 84 inhibits cellular leucyl-tRNA synthetases and AgnB2, which confers immunity to the antibiotic, is a resistant form of this enzyme. AgnA, a truncated homologue of asparaginyl tRNA synthetase could catalyze the phosphoramidate bond between a precursor of the methyl pentanamide side group and the nucleotide. We propose previously undescribed chemistry, catalyzed by AgnB1, to generate the precursor necessary for this phosphoramidate linkage. AgnC7 is related to ribonucleotide reductases and could generate the 3'-deoxyarabinose moiety of the nucleoside. Bioinformatics suggest that agnC3, agnC4, and agnC6 contribute to maturation of the methyl pentanamide, whereas agnC2 may produce the glucofuranose side group bound to the adenine ring. AgnG is related to bacterial exporters. An agnG mutant accumulated agrocin 84 intracellularly but did not export the antibiotic. pAgK84 is transmissible and encodes genes for conjugative DNA processing but lacks a type IV secretion system, suggesting that pAgK84 transfers by mobilization. By sequence analysis, the deletion engineered into pAgK1026 removed the oriT and essential tra genes, confirming the enhanced environmental safety of this modified form of pAgK84.


Asunto(s)
Nucleótidos de Adenina/biosíntesis , Nucleótidos de Adenina/farmacología , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Tumores de Planta/microbiología , Nucleótidos de Adenina/química , Nucleótidos de Adenina/metabolismo , Antibacterianos/metabolismo , Secuencia de Bases , Conjugación Genética , Replicación del ADN/genética , Datos de Secuencia Molecular , Mutación/genética , Control Biológico de Vectores , Mapeo Físico de Cromosoma , Rhizobium/citología
14.
Proc Natl Acad Sci U S A ; 102(12): 4264-9, 2005 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15767583

RESUMEN

The enzyme YkvM from Bacillus subtilis was identified previously along with three other enzymes (YkvJKL) in a bioinformatics search for enzymes involved in the biosynthesis of queuosine, a 7-deazaguanine modified nucleoside found in tRNA(GUN) of Bacteria and Eukarya. Genetic analysis of ykvJKLM mutants in Acinetobacter confirmed that each was essential for queuosine biosynthesis, and the genes were renamed queCDEF. QueF exhibits significant homology to the type I GTP cyclohydrolases characterized by FolE. Given that GTP is the precursor to queuosine and that a cyclohydrolase-like reaction was postulated as the initial step in queuosine biosynthesis, QueF was proposed to be the putative cyclohydrolase-like enzyme responsible for this reaction. We have cloned the queF genes from B. subtilis and Escherichia coli and characterized the recombinant enzymes. Contrary to the predictions based on sequence analysis, we discovered that the enzymes, in fact, catalyze a mechanistically unrelated reaction, the NADPH-dependent reduction of 7-cyano-7-deazaguanineto7-aminomethyl-7-deazaguanine, a late step in the biosynthesis of queuosine. We report here in vitro and in vivo studies that demonstrate this catalytic activity, as well as preliminary biochemical and bioinformatics analysis that provide insight into the structure of this family of enzymes.


Asunto(s)
Bacillus subtilis/enzimología , Escherichia coli/enzimología , GTP Ciclohidrolasa/química , GTP Ciclohidrolasa/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Acinetobacter/enzimología , Acinetobacter/genética , Secuencia de Aminoácidos , Bacillus subtilis/genética , Secuencia de Bases , ADN Bacteriano/genética , Escherichia coli/genética , GTP Ciclohidrolasa/genética , Genes Bacterianos , Datos de Secuencia Molecular , Nucleósido Q/biosíntesis , Oxidorreductasas/genética , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido
15.
Science ; 309(5740): 1533, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16141066

RESUMEN

Crops can be devastated by pathogenic strains of Agrobacterium tumefaciens that cause crown gall tumors. This devastation can be prevented by the nonpathogenic biocontrol agent A. radiobacter K84, which prevents disease by production of the "Trojan horse" toxin agrocin 84, which is specifically imported into tumorgenic A. tumefaciens strains to cause cell death. We demonstrate that this biocontrol agent targets A. tumefaciens leucyl-tRNA synthetase (LeuRS), an essential enzyme for cell viability, while the agent itself survives by having a second, self-protective copy of the synthetase. In principle, this strategy from nature could be applied to other crop diseases by direct intervention.


Asunto(s)
Nucleótidos de Adenina/toxicidad , Agrobacterium tumefaciens/enzimología , Bacteriocinas/toxicidad , Leucina-ARNt Ligasa/antagonistas & inhibidores , Tumores de Planta , Nucleótidos de Adenina/química , Nucleótidos de Adenina/metabolismo , Agrobacterium tumefaciens/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo
16.
J Biol Chem ; 280(4): 2405-8, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15579907

RESUMEN

A natural fragment of an enzyme that catalyzes the first step of protein synthesis-human tryptophanyl-tRNA synthetase (T2-TrpRS) has potent anti-angiogenic activity. A cellular receptor through which T2-TrpRS exerts its anti-angiogenic activity has not previously been identified. Here T2-TrpRS was shown to bind at intercellular junctions of endothelial cells (ECs). Using genetic knock-outs, binding was established to depend on VE-cadherin, a calcium-dependent adhesion molecule, which is selectively expressed in ECs, concentrated at adherens junctions, and is essential for normal vascular development. In contrast, T2-TrpRS binding to EC junctions was not dependent on platelet endothelial cell adhesion molecule type-1, another adhesion molecule found at EC junctions. Pull-down assays confirmed direct complex formation between T2-TrpRS and VE-cadherin. Binding of T2-TrpRS inhibited VEGF-induced ERK activation and EC migration. Thus, a VE-cadherin-dependent pathway is proposed to link T2-TrpRS to inhibition of new blood vessel formation.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Cadherinas/fisiología , Citocinas/metabolismo , Triptófano-ARNt Ligasa/metabolismo , Animales , Antígenos CD , Aorta/citología , Western Blotting , Bovinos , Movimiento Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Uniones Comunicantes , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Microscopía Confocal , Microscopía Fluorescente , Neovascularización Patológica , Unión Proteica , Proteínas Recombinantes/química , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Nature ; 420(6917): 841-4, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12490955

RESUMEN

RNA molecules are thought to have been prominent in the early history of life on Earth because of their ability both to encode genetic information and to exhibit catalytic function. The modern genetic alphabet relies on two sets of complementary base pairs to store genetic information. However, owing to the chemical instability of cytosine, which readily deaminates to uracil, a primitive genetic system composed of the bases A, U, G and C may have been difficult to establish. It has been suggested that the first genetic material instead contained only a single base-pairing unit. Here we show that binary informational macromolecules, containing only two different nucleotide subunits, can act as catalysts. In vitro evolution was used to obtain ligase ribozymes composed of only 2,6-diaminopurine and uracil nucleotides, which catalyse the template-directed joining of two RNA molecules, one bearing a 5'-triphosphate and the other a 3'-hydroxyl. The active conformation of the fastest isolated ribozyme had a catalytic rate that was about 36,000-fold faster than the uncatalysed rate of reaction. This ribozyme is specific for the formation of biologically relevant 3',5'-phosphodiester linkages.


Asunto(s)
2-Aminopurina/análogos & derivados , 2-Aminopurina/metabolismo , Nucleótidos/metabolismo , ARN Catalítico/genética , ARN Catalítico/metabolismo , Uracilo/metabolismo , Secuencia de Bases , Sitios de Unión , Catálisis , Evolución Molecular Dirigida , Evolución Molecular , Cinética , Ligasas/química , Ligasas/genética , Ligasas/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Nucleótidos/genética , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/metabolismo , ARN/genética , ARN/metabolismo , ARN Catalítico/química , Especificidad por Sustrato , Moldes Genéticos
18.
J Biol Chem ; 279(8): 6280-5, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-14660578

RESUMEN

Queuosine (Q) is a hypermodified 7-deazaguanosine nucleoside located in the anticodon wobble position of four amino acid-specific tRNAs. In bacteria, Q is produced de novo from GTP via the 7-deazaguanosine precursor preQ1 (7-aminoethyl 7-deazaguanine) by an uncharacterized pathway. PreQ1 is subsequently transferred to its specific tRNA by a tRNA-guanine transglycosylase (TGT) and then further modified in situ to produce Q. Here we use comparative genomics to implicate four gene families (best exemplified by the B. subtilis operon ykvJKLM) as candidates in the preQ1 biosynthetic pathway. Deletions were constructed in genes for each of the four orthologs in Acinetobacter. High pressure liquid chromatography analysis showed the Q nucleoside was absent from the tRNAs of each of four deletion strains. Electrospray ionization mass spectrometry confirmed the absence of Q in each mutant strain. Finally, introduction of the Bacillus subtilis ykvJKLM operon in trans complemented the Q deficiency of the two deletion mutants that were tested. Thus, the products of these four genes (named queC, -D, -E, and -F) are essential for the Q biosynthetic pathway.


Asunto(s)
Genes Bacterianos , Nucleósido Q/biosíntesis , Nucleósido Q/química , Acinetobacter/genética , Alelos , Bacillus subtilis/genética , Catálisis , Cromatografía Líquida de Alta Presión , ADN/química , Eliminación de Gen , Modelos Químicos , Familia de Multigenes , Mutación , Operón , ARN de Transferencia/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA