Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 36(12): 1921-1929, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-37983188

RESUMEN

Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.


Asunto(s)
Neoplasias Colorrectales , O(6)-Metilguanina-ADN Metiltransferasa , Humanos , Dominio Catalítico , Cisteína , ADN/química , Reparación del ADN , Espectrometría de Masas , O(6)-Metilguanina-ADN Metiltransferasa/genética , Oligodesoxirribonucleótidos/química , Péptidos
2.
Protein Expr Purif ; 203: 106212, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36481372

RESUMEN

Human neuronal cells are a more appropriate cell model for neurological disease studies such as Alzheimer and Parkinson's disease. SH-SY5Y neuroblastoma cells have been widely used for differentiation into a mature neuronal cell phenotype. The cellular differentiation process begins with retinoic acid incubation, followed by incubation with brain-derived neurotrophic factor (BDNF), a recombinant protein produced in E. coli cells. Endotoxin or lipopolysaccharide (LPS) is the major component of the outer membrane of bacterial cells that triggers the activation of pro-inflammatory cytokines and ultimately cell death. Consequently, any endotoxin contamination of the recombinant BDNF used for cell culture experiments would impact on data interpretation. Therefore, in this study, we expressed the BDNF recombinant protein in bacterial endotoxin-free cells that were engineered to modify the oligosaccharide chain of LPS rendering the LPS unable to trigger the immune response of human cells. The expression of DCX and MAP-2 in differentiated cells indicate that in-house and commercial BDNF are equally effective in inducing differentiation. This suggests that our in-house BDNF protein can be used to differentiate SH-SY5Y neuroblastoma cells without the need for an endotoxin removal step.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Parkinson , Ingeniería de Proteínas , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular , Línea Celular Tumoral , Endotoxinas/química , Endotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Neuroblastoma/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Recombinantes/genética , Ingeniería de Proteínas/métodos
3.
Bioorg Chem ; 131: 106287, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36455482

RESUMEN

We discovered a lead compound, N-methylbenzo[d]oxazol-2-amine (2a), which had comparable potency to albendazole, an orally administered anthelminticdrug, against Gnathostoma spinigerum, Caenorhabditis elegans and Trichinella spiralis. Compound 2a showed about 10 times lower cytotoxicity towards normal human cell line (HEK293) than albendazole. Moreover, we have developed new processes for the synthesis of N-alkylbenzo[d]oxazol-2-amine and N-alkylbenzo[d]thiazol-2-amine derivatives via metal-free conditions. This protocol could serve as a robust and scalable method, especially, to synthesize N-methylbenzo[d]oxazol-2-amine and N-methylbenzo[d]thiazol-2-amine derivatives which were difficult to prepare using other metal-free conditions. The method employed benzoxazole-2-thiol or benzothiazole-2-thiol as the substrate. The reaction was triggered by methylation of the thiol functional group to form the methyl sulfide intermediate, a crucial tactic, which facilitated in a smooth nucleophilic addition-elimination reaction with gaseous methylamine generated in situ from N-methylformamide. In addition, the proteomic analysis of compound 2a was also studied in this work.


Asunto(s)
Aminas , Antihelmínticos , Humanos , Aminas/química , Albendazol , Células HEK293 , Proteómica , Antihelmínticos/farmacología
4.
Appl Microbiol Biotechnol ; 107(24): 7439-7450, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801098

RESUMEN

For decades, plastic waste management has been one of the major ecological challenges of our society. Despite the introduction of biodegradable alternatives such as polylactic acid (PLA), their beneficial environmental impact is limited by the requirement of specific compost facility as biodegradation of PLA in natural environment occurs at a very slow rate. In this work, a plastic-degrading enzyme was utilized to facilitate degradation process. Genomic and proteomic tools were employed to identify a new biodegradable plastic-degrading enzyme from Cryptococcus nemorosus TBRC2959. The new enzyme, Cr14CLE, functions optimally under mild conditions with temperature range of 30 to 40 °C and suffers no significant loss of enzymatic activity at pH ranging from 6 to 8. In addition to PLA, Cr14CLE is capable to degrade other types of biodegradable plastic such as polybutylene succinate (PBS) and polybutylene adipate terephthalate (PBAT) as well as composite bioplastic. Applications of Cr14CLE have been demonstrated through the preparation of enzyme-coated PLA film and laminated PLA film with enzyme layer. PLA films prepared by both approaches exhibited capability to self-degrade in water. KEY POINTS: • Novel plastic-degrading enzyme (Cr14CLE) was identified and characterized. • Cr14CLE can degrade multiple types of biodegradable plastics under mild conditions. • Applications of Cr14CLE on self-degradable plastic were demonstrated.


Asunto(s)
Plásticos Biodegradables , Proteómica , Poliésteres , Ambiente , Plásticos/metabolismo
5.
Asian Pac J Allergy Immunol ; 41(1): 37-44, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32416667

RESUMEN

BACKGROUND: Wheat extracts containing both water/salt and alcohol soluble proteins may increase extract's accuracy for diagnosing IgE-mediated wheat allergy. OBJECTIVE: This study aimed to determine the performance of new invented in-house prepared wheat extracts for skin prick test (SPT). METHODS: Children aged 1-18 years with history of immediate wheat allergy were recruited. Four in-house prepared wheat extracts (wheat-Coca-10%EtOH, and 3 new invented extracts, wheat-salt, gliadin, and glutenin) and a commercial wheat extract were used for SPT. Serum specific IgE (sIgE) to wheat and omega-5 (ω-5) gliadin were also determined. Oral food challenge (OFC) with wheat flours was performed in all patients except those with history of wheat-induced anaphylaxis or with recent symptoms within the past 6 months. RESULTS: Thirty-one children were recruited. Of those, 14 were excluded from OFC (12 with history of anaphylaxis and 2 with recent symptom). OFC was positive in 8 of 17 children. Of the 5 extracts and sIgE to wheat and ω-5 gliadin, gliadin extract provided the best SPT performance with 84.2% sensitivity, 88.9% specificity, 94.1% positive predictive value (PPV), 72.7% negative predictive value (NPV), 7.59 positive likelihood ratio (LR), 0.18 negative LR, and 85.7% accuracy. CONCLUSIONS: Compared to other in-house and commercial wheat extracts and sIgE to wheat and ω-5 gliadin, SPT with an in-house gliadin extract yielded the highest performance for the diagnosis IgE-mediated wheat allergy.


Asunto(s)
Anafilaxia , Hipersensibilidad Inmediata , Hipersensibilidad al Trigo , Niño , Humanos , Hipersensibilidad al Trigo/diagnóstico , Gliadina , Anafilaxia/diagnóstico , Inmunoglobulina E , Pruebas Cutáneas , Alérgenos , Etanol
6.
Microb Ecol ; 83(1): 216-235, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33890146

RESUMEN

Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.


Asunto(s)
Aspergillus fumigatus , Citoesqueleto/microbiología , Epitelio/microbiología , Micosis , Scedosporium , Células A549 , Animales , Humanos , Pulmón , Ratones
7.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613589

RESUMEN

The noncontagious immune-mediated skin disease known as psoriasis is regarded as a chronic skin condition with a 0.09-11.4% global prevalence. The main obstacle to the eradication of the disease continues to be insufficient treatment options. Sericin, a natural biopolymer from Bombyx mori cocoons, can improve skin conditions via its immunomodulatory effect. Many external therapeutic methods are currently used to treat psoriasis, but sericin-based hydrogel is not yet used to treat plaques of eczema. Through the use of an imiquimod rat model, this study sought to identify the physical and chemical characteristics of a silk sericin-based poly(vinyl) alcohol (SS/PVA) hydrogel and assess both its therapeutic and toxic effects on psoriasis. The cytokines, chemokines, and genes involved in the pathogenesis of psoriasis were investigated, focusing on the immuno-pathological relationships. We discovered that the SS/PVA had a stable fabrication and proper release. Additionally, the anti-inflammatory, antioxidant, and anti-apoptotic properties of SS/PVA reduced the severity of psoriasis in both gross and microscopic skin lesions. This was demonstrated by a decrease in the epidermal histopathology score, upregulation of nuclear factor erythroid 2-related factor 2 and interleukin (IL)-10, and a decrease in the expression of tumor necrosis factor (TNF)-α and IL-20. Moreover, the genes S100a7a and S100a14 were downregulated. Additionally, in rats given the SS/PVA treatment, blood urea nitrogen, creatinine, and serum glutamic oxaloacetic transaminase levels were within normal limits. Our findings indicate that SS/PVA is safe and may be potentiated to treat psoriasis in a variety of forms and locations of plaque because of its physical, chemical, and biological characteristics.


Asunto(s)
Psoriasis , Sericinas , Ratas , Animales , Sericinas/farmacología , Sericinas/uso terapéutico , Sericinas/química , Alcohol Polivinílico/química , Psoriasis/tratamiento farmacológico , Hidrogeles , Vendajes
8.
Pharm Biol ; 60(1): 708-721, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35348427

RESUMEN

CONTEXT: Sericin is a component protein in the silkworm cocoon [Bombyx mori Linnaeus (Bombycidae)] that improves dysmorphic cardiac mitochondria under hypercholesterolemic conditions. This is the first study to explore cardiac mitochondrial proteins associated with sericin treatment. OBJECTIVE: To investigate the mechanism of action of sericin in cardiac mitochondria under hypercholesterolaemia. MATERIALS AND METHODS: Hypercholesterolaemia was induced in Wistar rats by feeding them 6% cholesterol-containing chow for 6 weeks. The hypercholesterolemic rats were separated into 2 groups (n = 6 for each): the sericin-treated (1,000 mg/kg daily) and nontreated groups. The treatment conditions were maintained for 4 weeks prior to cardiac mitochondria isolation. The mitochondrial structure was evaluated by immunolabeling electron microscopy, and differential mitochondrial protein expression was determined and quantitated by two-dimensional gel electrophoresis coupled with mass spectrometry. RESULTS: A 32.22 ± 2.9% increase in the percent striated area of cardiac muscle was observed in sericin-treated hypercholesterolemic rats compared to the nontreatment group (4.18 ± 1.11%). Alterations in mitochondrial proteins, including upregulation of optic atrophy 1 (OPA1) and reduction of NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1) expression, are correlated with a reduction in mitochondrial apoptosis under sericin treatment. Differential proteomic observation also revealed that sericin may improve mitochondrial energy production by upregulating acetyl-CoA acetyltransferase (ACAT1) and NADH dehydrogenase 1α subcomplex subunit 10 (NDUFA10) expression. DISCUSSION AND CONCLUSIONS: Sericin treatment could improve the dysmorphic mitochondrial structure, metabolism, and energy production of cardiac mitochondria under hypercholesterolaemia. These results suggest that sericin may be an alternative treatment molecule that is related to cardiac mitochondrial abnormalities.


Asunto(s)
Hipercolesterolemia , Sericinas , Animales , Hipercolesterolemia/tratamiento farmacológico , Mitocondrias , Dinámicas Mitocondriales , Proteómica/métodos , Ratas , Ratas Wistar , Sericinas/química , Sericinas/metabolismo , Sericinas/farmacología
9.
Medicina (Kaunas) ; 58(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744062

RESUMEN

Background and Objectives: Gastric cancer remains a major unmet clinical problem worldwide. Although conventional medical treatments are available, their curative effects are generally unsatisfactory. Consequently, it remains necessary to search natural products for potential alternatives in treating gastric cancer patients. Ocimum x africanum Lour. is a culinary herb that has been used in folk medicine for various diseases, but little is known regarding its anti-cancer activity against gastric cancer cells. In the current study, we focus on the anti-cancer mechanisms of O. x africanum essential oil (OAEO) in the AGS human gastric cancer cell line. Materials and Methods: After OAEO treatment, AGS cell viability was evaluated by MTT assay. Cell migration and apoptotic nuclear morphology were determined by wound-healing assay and DAPI staining, respectively. Gene expression levels of apoptosis-related genes were quantified by qRT-PCR. Differential protein expression was determined with an LC-MS/MS-based proteomics approach to identify the key proteins that may be important in the anti-cancer mechanisms of OAEO on AGS cells. The chemical constituents of OAEO were identified by GC-MS analysis. Results: We found OAEO to exhibit a potent growth-inhibiting effect on AGS cells, with an IC50 value of 42.73 µg/mL. After OAEO treatment for 24 h, AGS cell migration was significantly decreased relative to the untreated control. OAEO-treated AGS cells exhibited common features of apoptotic cell death, including cell shrinkage, membrane blebbing, chromatin condensation, and nuclear fragmentation. Apoptotic cell death was confirmed by qRT-PCR for apoptosis-related genes, revealing that OAEO decreased the expression of anti-apoptotic genes (BCL2 and BCL-xL) and activated pro-apoptotic genes and apoptotic caspase genes (TP53, BAX, CASP9, CASP12, and CASP3). Moreover, expression of CASP8 was not changed after treatment. Proteomic analysis revealed that OAEO may produce a signature effect on protein clusters relating to unfolded protein accumulation, thereby inducing severe ER stress and also impairing ribosome synthesis. STRING analysis revealed seven up-regulated and 11 down-regulated proteins, which were significantly associated with protein folding and ribosome biogenesis, respectively. Using GC-MS analysis, 6-methyl-5-hepten-2-one, citral, neral, and linalool were found to be the major chemical constituents in OAEO. Conclusions: Taken together, these results indicate that OAEO has a potential anti-proliferative effect on AGS cells. Our molecular findings show evidence supporting an important role of ER stress and ribosome biogenesis impairment in mediating the induction of cell death by OAEO through the mitochondrial-apoptotic pathway. This study, therefore, provides fundamental knowledge for future applications using OAEO as an alternative therapy in gastric cancer management.


Asunto(s)
Ocimum , Aceites Volátiles , Neoplasias Gástricas , Apoptosis , Línea Celular Tumoral , Cromatografía Liquida , Estrés del Retículo Endoplásmico , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Proteómica , Ribosomas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Espectrometría de Masas en Tándem
10.
Mol Cell Probes ; 57: 101728, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33819568

RESUMEN

Kikuchi-Fujimoto disease (KFD) is an extremely rare disease, and although it is reported to have a worldwide distribution, young Asian women are most likely to be affected. Although this disease is generally benign and self-limiting, distinguishing it from other diseases that cause lymphadenopathy (e.g., leukemia, lymphoma, and infectious diseases) is challenging. A lymph node biopsy is a definitive diagnostic technique for KFD and only requires skillful pathologists. There are no specific symptoms or laboratory tests for KFD, and more than 50% of KFD patients have suffered from being misdiagnosed with lymphoma, which leads to improper treatment. In this study, lymph node tissue samples from KFD patients were used to reveal their exomes and transcriptomes using a high-throughput nucleotide sequencer. Fourteen single nucleotide polymorphisms (SNPs) were identified as candidate KFD markers and were compared with a healthy lymph node exome dataset. The mutation of these genes caused disruptive impact in the proteins. Several SNPs associated with KFD involve genes related to human cancers, olfaction, and osteoblast differentiation. According to the transcriptome data, there were 238 up-regulated and 1,519 down-regulated genes. RANBP2-like and ribosomal protein L13 were the most up-regulated and down-regulated genes in KFD patients, respectively. The altered gene expression involved in the human immune system, chromatin remodeling, and gene transcription. A comparison of KFD and healthy datasets of exomes and transcriptomes may allow further insights into the KFD phenotype. The results may also facilitate future KFD diagnosis and treatment.


Asunto(s)
Linfadenitis Necrotizante Histiocítica , Exoma/genética , Femenino , Linfadenitis Necrotizante Histiocítica/diagnóstico , Linfadenitis Necrotizante Histiocítica/genética , Humanos , Ganglios Linfáticos , ARN , Secuenciación del Exoma
11.
BMC Vet Res ; 17(1): 60, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514370

RESUMEN

BACKGROUND: Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aß42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification. RESULTS: Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 48 and 41 proteins were changed in the ageing and adult groups, respectively. Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aß42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aß42 level was low compared with that in the other groups. Nevertheless, plasma Aß42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p = 0.131, R2 = 0.261). CONCLUSIONS: Our present findings suggest that plasma Aß42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aß42 in plasma for improved CCDS diagnosis. Further study in larger population-based cohort study is required in validation to define the correlation between protein expression and the pathogenesis of CCDS.


Asunto(s)
Disfunción Cognitiva/diagnóstico , Enfermedades de los Perros/diagnóstico , Proteoma , Envejecimiento , Péptidos beta-Amiloides/sangre , Animales , Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Disfunción Cognitiva/sangre , Enfermedades de los Perros/sangre , Perros , Femenino , Masculino , Tailandia
12.
Vet Dermatol ; 32(4): 338-e94, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33999459

RESUMEN

BACKGROUND: Dermatophagoides farinae (Der f) is a common allergen in dogs with atopic dermatitis (AD). However, the relevant components of Der f require further investigation. OBJECTIVES: We aimed to provide data on the immunoglobulin (Ig)E-binding specific components of Der f for further diagnostic and therapeutic applications. ANIMALS: Serum samples were collected from five healthy, nine Der f-allergic atopic and seven non-Der f-allergic atopic dogs identified based on an intradermal skin test. METHODS AND MATERIALS: We explored the component profiles of Der f extracts through 2D gel electrophoresis and IgE immunoblotting. The IgE-binding components in both groups of atopic dogs were analysed by mass spectrometry. RESULTS: The majority of Der f-allergic atopic dogs recognised Der f Alternaria alternata allergen 10 (Der f Alt a 10), elongation factor 1-alpha (EF1-α), gelsolin-like allergen Der f 16, Der f 28 and Der f 2. Der f 3, Der f 10, Der f 20 and Der f 32 were recognised as minor allergens. Alpha-enolase, serine protease, arginine kinase and a few hypothetical proteins were recognised components in both groups of atopic dogs. Unexpectedly, Der f 15 (chitinase) was found to be a minor component. CONCLUSIONS AND CLINICAL IMPORTANCE: Multiple IgE-binding allergens of Der f were identified in Thai atopic dogs. We propose that the specific antigen set that is bound by IgE, comprising Der f Alt a 10, EF1-α, gelsolin-like Der f 16, Der f 28 and Der f 2, could be used for future diagnostics and immunotherapy platforms.


Asunto(s)
Dermatitis Atópica , Enfermedades de los Perros , Alérgenos , Alternaria , Animales , Antígenos Dermatofagoides , Dermatitis Atópica/veterinaria , Dermatophagoides farinae , Perros , Inmunoglobulina E , Tailandia
13.
Molecules ; 26(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361810

RESUMEN

Antimicrobial peptides are promising molecules to address the global antibiotic resistance problem, however, optimization to achieve favorable potency and safety is required. Here, a peptide-template modification approach was employed to design physicochemical variants based on net charge, hydrophobicity, enantiomer, and terminal group. All variants of the scorpion venom peptide BmKn-2 with amphipathic α-helical cationic structure exhibited an increased antibacterial potency when evaluated against multidrug-resistant Salmonella isolates at a MIC range of 4-8 µM. They revealed antibiofilm activity in a dose-dependent manner. Sheep red blood cells were used to evaluate hemolytic and cell selectivity properties. Peptide Kn2-5R-NH2, dKn2-5R-NH2, and 2F-Kn2-5R-NH2 (variants with +6 charges carrying amidated C-terminus) showed stronger antibacterial activity than Kn2-5R (a variant with +5 charges bearing free-carboxyl group at C-terminus). Peptide dKn2-5R-NH2 (d-enantiomer) exhibited slightly weaker antibacterial activity with much less hemolytic activity (higher hemolytic concentration 50) than Kn2-5R-NH2 (l-enantiomer). Furthermore, peptide Kn2-5R with the least hydrophobicity had the lowest hemolytic activity and showed the highest specificity to Salmonella (the highest selectivity index). This study also explained the relationship of peptide physicochemical properties and bioactivities that would fulfill and accelerate progress in peptide antibiotic research and development.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas Citotóxicas Formadoras de Poros/farmacología , Animales , Antibacterianos/efectos adversos , Antibacterianos/química , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/microbiología , Hemólisis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros/genética , Salmonella/efectos de los fármacos , Salmonella/genética , Salmonella/patogenicidad , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Ovinos/sangre , Ovinos/microbiología , Relación Estructura-Actividad
14.
Medicina (Kaunas) ; 57(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34440988

RESUMEN

Background and Objectives: The effects of Ocimum tenuiflorum essential oil (OTEO) against gastric cancer remain unknown and merit investigation. Materials and Methods: In the present study, the anti-cancer activity of OTEO was examined in a human gastric cancer cell line (AGS). After OTEO treatment, AGS cell viability was determined by an MTT assay, and inhibition of metastasis was determined by cell migration and invasion assays. The expression of apoptosis-related genes in treated AGS cells was determined by qRT-PCR. Results: OTEO significantly decreased AGS cell viability in a dose-dependent manner (IC50 163.42 µg/mL) and effectively inhibited cell migration and invasion. Morphological examination demonstrated that OTEO induced cell shrinkage, chromatin condensation, and fragmentation, which are considered typical morphologies of apoptotic cell death. Pro-apoptotic genes (TP53, BAX, and BAK) were significantly up-regulated, while anti-apoptotic genes (BCL-2 and BCL-xL) were significantly down-regulated after treatment with OTEO. In addition, significantly increased gene expression was detected for CASP8, CASP9, and CASP3 in AGS cells exposed to OTEO. GC-MS analysis demonstrated that the major compound of OTEO was caryophyllene (25.85%) and α-pinene (11.66%). Conclusions: This in vitro study demonstrates for the first time that OTEO has potential anti-gastric cancer activity and may induce apoptosis in AGS cells through extrinsic and intrinsic pathways.


Asunto(s)
Aceites Volátiles , Neoplasias Gástricas , Apoptosis , Línea Celular Tumoral , Humanos , Ocimum sanctum , Aceites Volátiles/farmacología , Neoplasias Gástricas/tratamiento farmacológico
15.
J Food Sci Technol ; 58(2): 680-691, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33568862

RESUMEN

This study sought to assess the ideal conditions under which hydrolysate can be produced from the split gill mushroom proteins through the microbial protease, Alcalase. The research employed a central composite design and response surface methodology. Three specific parameters were varied for the purposes of the experimental process, while a fixed pH value of 8 was used in all cases. The variables were hydrolysis temperature (set as 45 °C, 50 °C, or 55 °C), hydrolysis time (set as 60 min, 120 min, or 180 min), and the ratio of enzyme to substrate (set as 2%, 4%, or 6% w/v). The variables under investigation exert a significant influence upon degree of hydrolysis (DH) in addition to 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity (p < 0.05). Fractionation of the hydrolysate was accomplished using molecular weight (MW) cut-off membranes, while the greatest radical-scavenging capability was observed in the < 0.65 kDa fraction. The MW < 0.65 kDa fraction underwent separation through RP-HPLC in order to create five sub-fractions. Among these, the greatest ABTS radical-scavenging capability was observed in the F5 sub-fraction, which was therefore chosen to undergo additional examination using quadrupole-time-of-flight-electron spin induction-mass spectrometry-based de novo peptide sequencing. Via this process it was possible to determine five antioxidant peptides. Furthermore, the MW < 0.65 kDa fraction was able to demonstrating cellular antioxidant activity in the context of a human intestinal cancer cell line (HT-29). The extent of this activity was shown to depend upon the concentration levels of the peptide.

16.
J Food Sci Technol ; 58(2): 752-763, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33568869

RESUMEN

In order to examine bee pollen hydrolysates to assess their anticancer and antioxidant properties, hydrolysis of bee pollen was first performed using three different commercially available enzymes: Alcalase®, Neutrase®, and Flavourzyme®. The study used DPPH and ABTS assay to evaluate the antioxidant properties of the hydrolysates obtained from bee pollen. All of the tested hydrolysates demonstrated antioxidant activity, while hydrolysate based on Alcalase® offered a high value for IC50 and was therefore chosen for further separation into five sub-fractions via ultrafiltration. The greatest antioxidant activity was presented by the MW < 0.65 kDa fraction, which achieved an IC50 value of 0.39 ± 0.01 µg/mL in the DPPH assay and 1.52 ± 0.01 µg/mL for ABTS. Purification of the MW < 0.65 kDa fraction was completed using RP-HPLC, whereupon the three fractions from the original six which had the highest antioxidant activity underwent further examination through ESI-Q-TOF-MS/MS. These particular peptides had between 7 and 11 amino acid residues. In the case of the MW < 0.65 kDa fraction, testing was also carried out to determine the viability of lung cancer cell lines, represented by ChaGo-K1 cells. Analysis of the antiproliferative properties allowed in vitro assessment of the ChaGo-K1 cells' viability following treatment using the MW < 0.65 kDa fraction. Flow-cytometry generated date which revealed that it was possible for the MW < 0.65 kDa fraction to induce apoptosis in the ChaGo-K1 cells in comparison to the results with cells which had not been treated.

17.
J Food Sci Technol ; 58(1): 85-97, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33505054

RESUMEN

ABSTRACT: Angiotensin-I converting enzyme (ACE) inhibitors are widely used to control hypertension. In this study, protein hydrolysates from shiitake mushroom were hydrolyzed to prepare ACE-inhibitory peptides. Optimum process conditions for the hydrolysis of shiitake mushrooms using Alcalase were optimized using response surface methodology. Monitoring was conducted to check the degree of hydrolysis (DH) and ACE inhibitory activity. In the results, the optimum condition with the highest DH value of 28.88% was 50.2 °C, 3-h hydrolysis time, and 1.16 enzyme/substrate ratios. The highest ACE inhibitory activity (IC50 of 0.33 µg/mL) was under 47 °C, 3 h 28 min hydrolysis time, and 0.59 enzyme/substrate ratios. The highest activity was fractionated into 5 ranges of molecular weight, and the fraction below 0.65 kDa showed the highest activity with IC50 of 0.23 µg/mL. This fraction underwent purification using RP-HPLC, meanwhile the peak which offered a retention time of about 37 min showed high ACE inhibitory activity. Mass spectrometry identified the amino acid sequence of this peak as Lys-Ile-Gly-Ser-Arg-Ser-Arg-Phe-Asp-Val-Thr (KIGSRSRFDVT), with a molecular weight of 1265.43 Da. The synthesized variant of this peptide produced an ACE inhibitory activity (IC50) of 37.14 µM. The peptide KIGSRSRFDVT was shown to serve as a non-competitive inhibitor according to the Lineweaver-Burk plot findings. A molecular docking study was performed, which showed that the peptide binding occurred at an ACE non-active site. The findings suggest that peptides derived from shiitake mushrooms could serve either as useful components in pharmaceutical products, or in functional foods for the purpose of treating hypertension.

18.
Bioorg Chem ; 98: 103732, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32171989

RESUMEN

This study reported the discovery of novel compounds containing five-membered ring fused quinoline core structures as anticancer and antimalarial agents. Two libraries containing these core structures, neocryptolepines and carbocycle-fused quinolines, were prepared and evaluated. Compound 3h was found to be much more potent than other analogs against cancer cell lines with high selectivity. Meanwhile, carbocycle-fused quinolines 5h and 5s showed moderate anticancer properties but much less cytotoxicity to normal cell than doxorubicin. In addition, compound 3h also showed much lower cytotoxic against human normal kidney cell line compared to doxorubicin standard. However, only compounds 3s and 3p provided acceptable results for antimalarial activities.


Asunto(s)
Alcaloides/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Plasmodium falciparum/efectos de los fármacos , Quinolinas/farmacología , Alcaloides/síntesis química , Alcaloides/química , Antimaláricos/síntesis química , Antimaláricos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
19.
Artículo en Inglés | MEDLINE | ID: mdl-31138572

RESUMEN

Pythium insidiosum is an oomycete microorganism that causes a life-threatening infectious disease, called pythiosis, in humans and animals. The disease has been increasingly reported worldwide. Conventional antifungal drugs are ineffective against P. insidiosum Treatment of pythiosis requires the extensive removal of infected tissue (i.e., eye and leg), but inadequate surgery and recurrent infection often occur. A more effective treatment is needed for pythiosis patients. Drug repurposing is a promising strategy for the identification of a U.S. Food and Drug Administration-approved drug for the control of P. insidiosum Disulfiram has been approved to treat alcoholism, but it exhibits antimicrobial activity against various pathogens. In this study, we explored whether disulfiram possesses an anti-P. insidiosum activity. A total of 27 P. insidiosum strains, isolated from various hosts and geographic areas, were susceptible to disulfiram in a dose-dependent manner. The MIC range of disulfiram against P. insidiosum (8 to 32 mg/liter) was in line with that of other pathogens. Proteogenomic analysis indicated that several potential targets of disulfiram (i.e., aldehyde dehydrogenase and urease) were present in P. insidiosum By homology modeling and molecular docking, disulfiram can bind the putative aldehyde dehydrogenase and urease of P. insidiosum at low energies (i.e., -6.1 and -4.0 Kcal/mol, respectively). Disulfiram diminished the biochemical activities of these enzymes. In conclusion, disulfiram can inhibit the growth of many pathogenic microorganisms, including P. insidiosum The drug can bind and inactivate multiple proteins of P. insidiosum, which may contribute to its broad antimicrobial property. Drug repurposing of disulfiram could be a new treatment option for pythiosis.


Asunto(s)
Inhibidores del Acetaldehído Deshidrogenasa/farmacología , Aldehído Deshidrogenasa/antagonistas & inhibidores , Disulfiram/farmacología , Oomicetos/efectos de los fármacos , Pythium/efectos de los fármacos , Ureasa/antagonistas & inhibidores , Animales , Antifúngicos/farmacología , Humanos , Simulación del Acoplamiento Molecular/métodos , Pitiosis/tratamiento farmacológico , Pitiosis/microbiología
20.
Proteome Sci ; 17: 1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30962768

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is caused by excessive accumulation of fat within the liver, leading to further severe conditions such as non-alcoholic steatohepatitis (NASH). Progression of healthy liver to steatosis and NASH is not yet fully understood in terms of process and response. Hepatic oxidative stress is believed to be one of the factors driving steatosis to NASH. Oxidative protein modification is the major cause of protein functional impairment in which alteration of key hepatic enzymes is likely to be a crucial factor for NAFLD biology. In the present study, we aimed to discover carbonylated protein profiles involving in NAFLD biology in vitro. METHODS: Hepatocyte cell line was used to induce steatosis with fatty acids (FA) in the presence and absence of menadione (oxidative stress inducer). Two-dimensional gel electrophoresis-based proteomics and dinitrophenyl hydrazine derivatization technique were used to identify carbonylated proteins. Sequentially, in order to view changes in protein carbonylation pathway, enrichment using Funrich algorithm was performed. The selected carbonylated proteins were validated with western blot and carbonylated sites were further identified by high-resolution LC-MS/MS. RESULTS: Proteomic results and pathway analysis revealed that carbonylated proteins are involved in NASH pathogenesis pathways in which most of them play important roles in energy metabolisms. Particularly, carbonylation level of ATP synthase subunit α (ATP5A), a key protein in cellular respiration, was reduced after FA and FA with oxidative stress treatment, whereas its expression was not altered. Carbonylated sites on this protein were identified and it was revealed that these sites are located in nucleotide binding region. Modification of these sites may, therefore, disturb ATP5A activity. As a consequence, the lower carbonylation level on ATP5A after FA treatment solely or with oxidative stress can increase ATP production. CONCLUSIONS: The reduction in carbonylated level of ATP5A might occur to generate more energy in response to pathological conditions, in our case, fat accumulation and oxidative stress in hepatocytes. This would imply the association between protein carbonylation and molecular response to development of steatosis and NASH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA