Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2315043121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968128

RESUMEN

Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.


Asunto(s)
Blastocisto , Oocitos , Animales , Blastocisto/metabolismo , Ratones , Oocitos/metabolismo , Femenino , Orgánulos/metabolismo , Imagen Óptica/métodos
2.
Nature ; 529(7584): 37-42, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26738589

RESUMEN

During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.


Asunto(s)
Autofagia/fisiología , Senescencia Celular , Células Satélite del Músculo Esquelético/citología , Envejecimiento/patología , Animales , Recuento de Células , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Epigénesis Genética , Homeostasis , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia , Músculo Esquelético/citología , Músculo Esquelético/patología , Orgánulos/metabolismo , Estrés Oxidativo , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regeneración , Sarcopenia/patología , Sarcopenia/prevención & control , Células Satélite del Músculo Esquelético/patología
3.
Neurobiol Dis ; 127: 210-222, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30831192

RESUMEN

Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.


Asunto(s)
Trastorno Autístico/metabolismo , Haploinsuficiencia , Neocórtex/metabolismo , Red Nerviosa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Conducta Social , Animales , Trastorno Autístico/genética , Conducta Animal/fisiología , Masculino , Ratones , Mutación Missense , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
4.
Xenotransplantation ; 26(3): e12507, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30963648

RESUMEN

INTRODUCTION: Recent immunological and transgenic advances are a promising alternative using limited materials of human origin for transplantation. However, it is essential to achieve social acceptance of this therapy. OBJECTIVE: To analyze the attitude of nursing students from Spanish universities toward organ xenotransplantation (XTx) and to determine the factors affecting their attitude. MATERIALS AND METHODS: Type of study: A sociological, multicentre, and observational study. STUDY POPULATION: Nursing students enrolled in Spain (n = 28,000). SAMPLE SIZE: A sample of 10 566 students estimating a proportion of 76% (99% confidence and precision of ±1%), stratified by geographical area and year of study. Instrument of measurement: A validated questionnaire (PCID-XenoTx-RIOS) was handed out to every student in a compulsory session. This survey was self-administered and self-completed voluntarily and anonymously by each student in a period of 5-10 min. STATISTICAL ANALYSIS: descriptive analysis, Student's t test, the chi-square test, and a logistic regression analysis. RESULTS: A completion rate: 84% (n = 8913) was obtained. If the results of XTx were as good as in human donation, 74% (n = 6564) would be in favor and 22% (n = 1946) would have doubts. The following variables affected this attitude: age (P < 0.001); sex (P < 0.001); geographical location (P < 0.001); academic year of study (P < 0.001); attitude toward organ donation (P < 0.001); belief in the possibility of needing a transplant (P < 0.001); discussion of transplantation with one's family (P < 0.001) and friends (P < 0.001); and the opinion of one's partner (P < 0.001). The following variables persisted in the multivariate analysis: being a male (OR = 1.436; P < 0.001); geographical location (OR = 1.937; P < 0.001); an attitude in favor of donation (OR = 1.519; P < 0.001); belief in the possibility of needing a transplant (OR = 1.497; P = 0.036); and having spoken about the issue with family (OR = 1.351; P < 0.001) or friends (OR = 1.240; P = 0.001). CONCLUSIONS: The attitude of nursing students toward organ XTx is favorable and is associated with factors of general knowledge about organ donation and transplantation and social interaction.


Asunto(s)
Actitud , Trasplante de Órganos , Estudiantes de Enfermería/estadística & datos numéricos , Trasplante Heterólogo , Femenino , Xenoinjertos/inmunología , Humanos , Donadores Vivos , Masculino , Trasplante de Órganos/métodos , Estudiantes de Medicina , Obtención de Tejidos y Órganos/métodos
5.
J Biol Chem ; 291(4): 1664-1675, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26601941

RESUMEN

Despite much evidence of the involvement of the proteasome-ubiquitin signaling system in temperature stress response, the dynamics of the ubiquitylome during cold response has not yet been studied. Here, we have compared quantitative ubiquitylomes from a strain deficient in proteasome substrate recruitment and a reference strain during cold response. We have observed that a large group of proteins showing increased ubiquitylation in the proteasome mutant at low temperature is comprised by reverses suppressor of Ty-phenotype 5 (Rsp5)-regulated plasma membrane proteins. Analysis of internalization and degradation of plasma membrane proteins at low temperature showed that the proteasome becomes determinant for this process, whereas, at 30 °C, the proteasome is dispensable. Moreover, our observations indicate that proteasomes have increased capacity to interact with lysine 63-polyubiquitylated proteins during low temperature in vivo. These unanticipated observations indicate that, during cold response, there is a proteolytic cellular reprogramming in which the proteasome acquires a role in the endocytic-vacuolar pathway.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Frío , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
6.
Methods ; 68(1): 48-59, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24814031

RESUMEN

Biological imaging based on light microscopy comes at the core of the methods that let us understanding morphology and its dynamics in synergy to the spatiotemporal distribution of cellular and molecular activities as the organism develops and becomes functional. Non-linear optical tools and superesolution methodologies are under constant development and their applications to live imaging of whole organisms keep improving as we speak. Genetically coded biosensors, multicolor clonal methods and optogenetics in different organisms and, in particular, in Drosophila follow equivalent paths. We anticipate a brilliant future for live imaging providing the roots for the holistic understanding, rather than for individual parts, of development and function at the whole-organism level.


Asunto(s)
Drosophila melanogaster/genética , Imagen Molecular/métodos , Animales , Biología Evolutiva/métodos , Microscopía Fluorescente/métodos
7.
Elife ; 122024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530350

RESUMEN

Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.


Asunto(s)
Núcleo Celular , Histonas , Humanos , Histonas/genética , Nucléolo Celular/genética , Cromatina , Procesamiento de Imagen Asistido por Computador
8.
Sci Signal ; 17(822): eabq1007, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320000

RESUMEN

Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCß pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.


Asunto(s)
Axones , Neuronas , Animales , Ratones , Axones/metabolismo , Mamíferos/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo
9.
Invest Educ Enferm ; 41(3)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38589308

RESUMEN

Objective: This work sought to know the view of Nursing professors and students about the competencies the faculty staff must have to deploy their educational function with maximum quality and efficiency. Methods: Descriptive qualitative study through focus groups conducted with professors, students and recent Nursing career graduates from universities in Spain. Results: The importance of the proposed teaching competencies was delved into, highlighting the importance of professors knowing the context in which they teach, having the ability to self-evaluate their activity, and having adequate interpersonal communication skills, and deploy the teaching-learning process by performing proper planning, using new technologies, and knowing how to engage in teamwork. Moreover, a small discrepancy was detected in relation to disciplinary competence, which students felt was of importance, but which academics indicated is taken for granted in nursing professors; competencies directly related to the act of teaching must be enhanced. Conclusion: . Practical unanimity was found between academics and students in affirming that the competencies investigated are important for adequate development of the teaching activity in nursing professors. In all cases, the urgent need was highlighted for nursing professors to have adequate teaching training to provide their students with formation of the highest quality.


Asunto(s)
Bachillerato en Enfermería , Estudiantes de Enfermería , Humanos , Grupos Focales , Aprendizaje , Investigación Cualitativa , Docentes de Enfermería , Enseñanza
10.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096882

RESUMEN

Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Animales , Ratones , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Endosomas/metabolismo , Fibroblastos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo
11.
iScience ; 26(10): 107899, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766990

RESUMEN

Clathrin-mediated endocytosis (CME) is an essential cellular process, conserved among eukaryotes. Yeast constitutes a powerful genetic model to dissect the complex endocytic machinery, yet there is a lack of specific pharmacological agents to interfere with CME in these organisms. TL2 is a light-regulated peptide inhibitor targeting the AP2-ß-adaptin/ß-arrestin interaction and that can photocontrol CME with high spatiotemporal precision in mammalian cells. Here, we study endocytic protein dynamics by live-cell imaging of the fluorescently tagged coat-associated protein Sla1-GFP, demonstrating that TL2 retains its inhibitory activity in S. cerevisiae spheroplasts. This is despite the ß-adaptin/ß-arrestin interaction not being conserved in yeast. Our data indicate that the AP2 α-adaptin is the functional target of activated TL2. We identified as interacting partners for the α-appendage, the Eps15 and epsin homologues Ede1 and Ent1. This demonstrates that endocytic cargo loading and sensing can be executed by conserved molecular interfaces, regardless of the proteins involved.

12.
Oncogene ; 42(28): 2218-2233, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37301928

RESUMEN

Neuroblastoma is a pediatric cancer that can present as low- or high-risk tumors (LR-NBs and HR-NBs), the latter group showing poor prognosis due to metastasis and strong resistance to current therapy. Whether LR-NBs and HR-NBs differ in the way they exploit the transcriptional program underlying their neural crest, sympatho-adrenal origin remains unclear. Here, we identified the transcriptional signature distinguishing LR-NBs from HR-NBs, which consists mainly of genes that belong to the core sympatho-adrenal developmental program and are associated with favorable patient prognosis and with diminished disease progression. Gain- and loss-of-function experiments revealed that the top candidate gene of this signature, Neurexophilin-1 (NXPH1), has a dual impact on NB cell behavior in vivo: whereas NXPH1 and its receptor α-NRXN1 promote NB tumor growth by stimulating cell proliferation, they conversely inhibit organotropic colonization and metastasis. As suggested by RNA-seq analyses, these effects might result from the ability of NXPH1/α-NRXN signalling to restrain the conversion of NB cells from an adrenergic state to a mesenchymal one. Our findings thus uncover a transcriptional module of the sympatho-adrenal program that opposes neuroblastoma malignancy by impeding metastasis, and pinpoint NXPH1/α-NRXN signaling as a promising target to treat HR-NBs.


Asunto(s)
Neuroblastoma , Neuropéptidos , Niño , Humanos , Cresta Neural/patología , Neuroblastoma/genética , Neuroblastoma/patología , Neuropéptidos/genética , Glicoproteínas
13.
Dev Cell ; 12(3): 467-74, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17336911

RESUMEN

Stem cell asymmetric division requires tight control of spindle orientation. To study this key process, we have recorded Drosophila larval neural stem cells (NBs) engineered to express fluorescent reporters for microtubules, pericentriolar material (PCM), and centrioles. We have found that early in the cell cycle, the two centrosomes become unequal: one organizes an aster that stays near the apical cortex for most of the cell cycle, while the other loses PCM and microtubule-organizing activity, and moves extensively throughout the cell until shortly before mitosis when, located near the basal cortex, it recruits PCM and organizes the second mitotic aster. Upon division, the apical centrosome remains in the stem cell, while the other goes into the differentiating daughter. Apical aster maintenance requires the function of Pins. These results reveal that spindle orientation in Drosophila larval NBs is determined very early in the cell cycle, and is mediated by asymmetric centrosome function.


Asunto(s)
División Celular/fisiología , Centrosoma/metabolismo , Drosophila/embriología , Sistema Nervioso/embriología , Huso Acromático/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Polaridad Celular/fisiología , Células Cultivadas , Centriolos/genética , Centriolos/metabolismo , Centriolos/ultraestructura , Centrosoma/ultraestructura , Regulación hacia Abajo/fisiología , Drosophila/citología , Drosophila/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Sistema Nervioso/metabolismo , Sistema Nervioso/ultraestructura , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Región Organizadora del Nucléolo/ultraestructura , Huso Acromático/ultraestructura , Células Madre/ultraestructura
14.
Development ; 136(20): 3393-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19762421

RESUMEN

Spindle alignment along the apicobasal polarity axis is mandatory for proper self-renewing asymmetric division in Drosophila neuroblasts (NBs). In embryonic NBs, spindles have been reported to assemble orthogonally to the polarity axis and later rotate to align with it. In larval NBs, spindles assemble directly aligned with the axis owing to the differential spatiotemporal control of the microtubule organising activity of their centrosomes. We have recorded embryonic NBs that express centrosome and microtubule reporters, from delamination up to the fourth cell cycle, by two-photon confocal microscopy, and have found that the switch between these two spindle orientation modes occurs in the second cell cycle of the NB, the first that follows delamination. Therefore, predetermined spindle orientation is not restricted to larval NBs. On the contrary, it actually applies to all but the first cell cycle of embryonic NBs.


Asunto(s)
Ciclo Celular , Polaridad Celular , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Neuronas/citología , Huso Acromático , Animales , Larva/citología
15.
Nat Commun ; 13(1): 3263, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672304

RESUMEN

Enhancers are key regulatory elements that govern gene expression programs in response to developmental signals. However, how multiple enhancers arrange in the 3D-space to control the activation of a specific promoter remains unclear. To address this question, we exploited our previously characterized TGFß-response model, the neural stem cells, focusing on a ~374 kb locus where enhancers abound. Our 4C-seq experiments reveal that the TGFß pathway drives the assembly of an enhancer-cluster and precise gene activation. We discover that the TGFß pathway coactivator JMJD3 is essential to maintain these structures. Using live-cell imaging techniques, we demonstrate that an intrinsically disordered region contained in JMJD3 is involved in the formation of phase-separated biomolecular condensates, which are found in the enhancer-cluster. Overall, in this work we uncover novel functions for the coactivator JMJD3, and we shed light on the relationships between the 3D-conformation of the chromatin and the TGFß-driven response during mammalian neurogenesis.


Asunto(s)
Células-Madre Neurales , Factor de Crecimiento Transformador beta , Animales , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Expresión Génica , Genoma , Mamíferos/genética , Células-Madre Neurales/metabolismo , Activación Transcripcional/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
16.
Front Bioinform ; 1: 627626, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36303768

RESUMEN

We developed AutoscanJ, a suite of ImageJ scripts enabling to image targets of interest by automatically driving a motorized microscope at the corresponding locations. For live samples, our software can sequentially detect biological events from their onset and further image them at high resolution, an action that would be impractical by user operation. For fixed samples, the software can dramatically reduce the amount of data acquired and the acquisition duration in situations where statistically few targets of interest are observed per field of view. AutoScanJ is compatible with motorized fluorescence microscopes controlled by Leica LAS AF/X or Micro-Manager. The software is straightforward to set up and new custom image analysis workflows to detect targets of interest can be simply implemented and shared with minimal efforts as independent ImageJ macro functions. We illustrate five different application scenarios with the system ranging from samples fixed on micropatterned surfaces to live cells undergoing several rounds of division. The target detection functions for these applications are provided and can be used as a starting point and a source of inspiration for new applications. Overall, AutoScanJ helps to optimize microscope usage by autonomous operation, and it opens up new experimental avenues by enabling the real-time detection and selective imaging of transient events in live microscopy.

17.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34283201

RESUMEN

Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)-endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteroles/biosíntesis , Transporte Biológico , Membrana Celular/metabolismo , Endocitosis , Saccharomyces cerevisiae/citología
18.
ACS Appl Mater Interfaces ; 13(37): 44108-44123, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34494824

RESUMEN

Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/métodos , Matriz Extracelular Descelularizada/química , Células Madre Mesenquimatosas/química , Andamios del Tejido/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Modelos Biológicos , Prueba de Estudio Conceptual , Microambiente Tumoral/fisiología
19.
Nat Commun ; 12(1): 4540, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315875

RESUMEN

The mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations.


Asunto(s)
Autofagia , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Animales , Células CHO , Cricetulus , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Células HEK293 , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Modelos Biológicos , Fenotipo , Unión Proteica , Dominios Proteicos , Ratas Wistar , Proteína Reguladora Asociada a mTOR/metabolismo , Proteína Sequestosoma-1/metabolismo
20.
Sci Signal ; 14(691)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257105

RESUMEN

Synaptic plasticity involves structural modifications in dendritic spines that are modulated by local protein synthesis and actin remodeling. Here, we investigated the molecular mechanisms that connect synaptic stimulation to these processes. We found that the phosphorylation of isoform-specific sites in eEF1A2-an essential translation elongation factor in neurons-is a key modulator of structural plasticity in dendritic spines. Expression of a nonphosphorylatable eEF1A2 mutant stimulated mRNA translation but reduced actin dynamics and spine density. By contrast, a phosphomimetic eEF1A2 mutant exhibited decreased association with F-actin and was inactive as a translation elongation factor. Activation of metabotropic glutamate receptor signaling triggered transient dissociation of eEF1A2 from its regulatory guanine exchange factor (GEF) protein in dendritic spines in a phosphorylation-dependent manner. We propose that eEF1A2 establishes a cross-talk mechanism that coordinates translation and actin dynamics during spine remodeling.


Asunto(s)
Actinas , Espinas Dendríticas , Factor 1 de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , Citoesqueleto de Actina , Actinas/genética , Plasticidad Neuronal , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA