Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Biol ; 32(9): 2076-2083.e2, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35338851

RESUMEN

As organs and tissues approach their normal size during development or regeneration, growth slows down, and cell proliferation progressively comes to a halt. Among the various processes suggested to contribute to growth termination,1-10 mechanical feedback, perhaps via adherens junctions, has been suggested to play a role.11-14 However, since adherens junctions are only present in a narrow plane of the subapical region, other structures are likely needed to sense mechanical stresses along the apical-basal (A-B) axis, especially in a thick pseudostratified epithelium. This could be achieved by nuclei, which have been implicated in mechanotransduction in tissue culture.15 In addition, mechanical constraints imposed by nuclear crowding and spatial confinement could affect interkinetic nuclear migration (IKNM),16 which allows G2 nuclei to reach the apical surface, where they normally undergo mitosis.17-25 To explore how mechanical constraints affect IKNM, we devised an individual-based model that treats nuclei as deformable objects constrained by the cell cortex and the presence of other nuclei. The model predicts changes in the proportion of cell-cycle phases during growth, which we validate with the cell-cycle phase reporter FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator).26 However, this model does not preclude indefinite growth, leading us to postulate that nuclei must migrate basally to access a putative basal signal required for S phase entry. With this refinement, our updated model accounts for the observed progressive slowing down of growth and explains how pseudostratified epithelia reach a stereotypical thickness upon completion of growth.


Asunto(s)
Mecanotransducción Celular , Mitosis , Ciclo Celular , Núcleo Celular/metabolismo , Epitelio/metabolismo
2.
Nat Cell Biol ; 23(2): 127-135, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495632

RESUMEN

Ribosomes are multicomponent molecular machines that synthesize all of the proteins of living cells. Most of the genes that encode the protein components of ribosomes are therefore essential. A reduction in gene dosage is often viable albeit deleterious and is associated with human syndromes, which are collectively known as ribosomopathies1-3. The cell biological basis of these pathologies has remained unclear. Here, we model human ribosomopathies in Drosophila and find widespread apoptosis and cellular stress in the resulting animals. This is not caused by insufficient protein synthesis, as reasonably expected. Instead, ribosomal protein deficiency elicits proteotoxic stress, which we suggest is caused by the accumulation of misfolded proteins that overwhelm the protein degradation machinery. We find that dampening the integrated stress response4 or autophagy increases the harm inflicted by ribosomal protein deficiency, suggesting that these activities could be cytoprotective. Inhibition of TOR activity-which decreases ribosomal protein production, slows down protein synthesis and stimulates autophagy5-reduces proteotoxic stress in our ribosomopathy model. Interventions that stimulate autophagy, combined with means of boosting protein quality control, could form the basis of a therapeutic strategy for this class of diseases.


Asunto(s)
Mutación/genética , Proteínas/toxicidad , Ribosomas/genética , Ribosomas/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Alelos , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Células HEK293 , Heterocigoto , Humanos , Discos Imaginales/efectos de los fármacos , Discos Imaginales/metabolismo , Agregado de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteómica , Proteínas Ribosómicas/biosíntesis , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Alas de Animales/efectos de los fármacos , Alas de Animales/metabolismo
3.
Nat Commun ; 8: 13815, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28045022

RESUMEN

A stable pool of morphogen-producing cells is critical for the development of any organ or tissue. Here we present evidence that JAK/STAT signalling in the Drosophila wing promotes the cycling and survival of Hedgehog-producing cells, thereby allowing the stable localization of the nearby BMP/Dpp-organizing centre in the developing wing appendage. We identify the inhibitor of apoptosis dIAP1 and Cyclin A as two critical genes regulated by JAK/STAT and contributing to the growth of the Hedgehog-expressing cell population. We also unravel an early role of JAK/STAT in guaranteeing Wingless-mediated appendage specification, and a later one in restricting the Dpp-organizing activity to the appendage itself. These results unveil a fundamental role of the conserved JAK/STAT pathway in limb specification and growth by regulating morphogen production and signalling, and a function of pro-survival cues and mitogenic signals in the regulation of the pool of morphogen-producing cells in a developing organ.


Asunto(s)
Ciclina A/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Inhibidoras de la Apoptosis/genética , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Factores de Transcripción/genética , Alas de Animales/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Ciclina A/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Quinasas Janus/metabolismo , Morfogénesis/genética , Tamaño de los Órganos , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA