Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Toxicol ; 42(1): 19-36, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36523256

RESUMEN

Liver responses are the most common endpoints used as the basis for setting exposure standards. Liver hepatocytes play a vital role in biotransformation of xenobiotics, but non-parenchymal cells (NPCs) in the liver are also involved in certain liver responses. Development of in vitro systems that more faithfully capture liver responses to reduce reliance on animals is a major focus of New Approach Methodology (NAMs). Since rodent regulatory studies are frequently the sole source safety assessment data, mode-of-action data, and used for risk assessments, in vitro rodent models that reflect in vivo responses need to be developed to reduce reliance on animal models. In the work presented in this paper, we developed a 2-D hepatocyte monoculture and 2-D liver cell co-culture system using rat liver cells. These models were assessed for conditions for short-term stability of the cultures and phenotypic and transcriptomic responses of 2 prototypic hepatotoxicants compounds - acetaminophen and phenobarbital. The optimized multi-cellular 2-D culture required use of freshly prepared hepatocytes and NPCs from a single rat, a 3:1 ratio of hepatocytes to NPCs and growth medium using 50% Complete Williams E medium (WEM) and 50% Endothelial Cell Medium (ECM). The transcriptomic responses of the 2 model systems to PB were compared to previous studies from TG-Gates on the gene expression changes in intact rats and the co-culture model responses were more representative of the in vivo responses. Transcriptomic read-outs promise to move beyond conventional phenotypic evaluations with these in vitro NAMs and provide insights about modes of action.


Asunto(s)
Hepatocitos , Hígado , Ratas , Animales , Técnicas de Cocultivo , Hepatocitos/metabolismo , Hígado/metabolismo , Acetaminofén/toxicidad , Modelos Biológicos , Células Cultivadas
2.
Altern Lab Anim ; 51(1): 55-79, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36821083

RESUMEN

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Nicotiana/toxicidad , Productos de Tabaco/toxicidad , Nicotina/toxicidad , Aerosoles/toxicidad , Técnicas In Vitro
3.
Xenobiotica ; 52(3): 301-311, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35473450

RESUMEN

α-Pinene caused a concentration-responsive increase in bladder hyperplasia and decrease in sperm counts in rodents following inhalation exposure. Additionally, it formed a prospective reactive metabolite, α-pinene oxide.To provide human relevant context for data generated in animal models and explore potential mechanism, we undertook studies to investigate the metabolism of α-pinene to α-pinene oxide and mutagenicity of α-pinene and α-pinene oxide.α-Pinene oxide was formed in rat and human microsomes and hepatocytes with some species differences. Based on area under the concentration versus time curves, the formation of α-pinene oxide was up to 4-fold higher in rats than in humans.While rat microsomes cleared α-pinene oxide faster than human microsomes, the clearance of α-pinene oxide in hepatocytes was similar between species.α-Pinene was not mutagenic with or without induced rat liver S9 in Salmonella typhimurium or Escherichia coli when tested up to 10 000 µg/plate while α-pinene oxide was mutagenic at ≥25 µg/plate.α-Pinene was metabolised to α-pinene oxide under the conditions of the bacterial mutation assay although the concentration was approximately 3-fold lower than the lowest α-pinene oxide concentration that was positive in the assay, potentially explaining the lack of mutagenicity observed with α-pinene.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/toxicidad , Animales , Monoterpenos Bicíclicos , Daño del ADN , Masculino , Microsomas Hepáticos/metabolismo , Pruebas de Mutagenicidad , Mutágenos/metabolismo , Mutágenos/farmacología , Estudios Prospectivos , Ratas
4.
Nucleic Acids Res ; 48(3): e13, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31822921

RESUMEN

Genotoxicity testing is critical for predicting adverse effects of pharmaceutical, industrial, and environmental chemicals. The alkaline comet assay is an established method for detecting DNA strand breaks, however, the assay does not detect potentially carcinogenic bulky adducts that can arise when metabolic enzymes convert pro-carcinogens into a highly DNA reactive products. To overcome this, we use DNA synthesis inhibitors (hydroxyurea and 1-ß-d-arabinofuranosyl cytosine) to trap single strand breaks that are formed during nucleotide excision repair, which primarily removes bulky lesions. In this way, comet-undetectable bulky lesions are converted into comet-detectable single strand breaks. Moreover, we use HepaRG™ cells to recapitulate in vivo metabolic capacity, and leverage the CometChip platform (a higher throughput more sensitive comet assay) to create the 'HepaCometChip', enabling the detection of bulky genotoxic lesions that are missed by current genotoxicity screens. The HepaCometChip thus provides a broadly effective approach for detection of bulky DNA adducts.


Asunto(s)
Ensayo Cometa/métodos , Aductos de ADN/análisis , Carcinogénesis , Línea Celular , Roturas del ADN de Cadena Simple , Reparación del ADN , Humanos , Análisis por Micromatrices/métodos , Sensibilidad y Especificidad
5.
Arch Toxicol ; 94(7): 2413-2421, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388820

RESUMEN

Previous rat toxicity studies of alpha-glycosyl isoquercitrin (AGIQ), a water-soluble flavonol glycoside derived from rutin, revealed systemic yellow bone discoloration. This investigative study was conducted to determine the AGIQ metabolite(s) responsible for the discoloration. Female Sprague-Dawley rats were administered dietary AGIQ at doses of 0%, 1.5%, 3.0%, or 5.0% (0, 1735.0, 3480.8, and 5873.7 mg/kg/day, respectively) for 14 days, followed by a 14- or 28-day recovery period. Measurements of quercetin in urine and quercetin, quercetin 3-O-glucuronide, kaempferol, and 3-o-methylquercetin metabolites of AGIQ in bone (femur), white and brown fat, and cerebrum samples were conducted following the exposure period and each recovery period. Gross examination of the femur revealed yellow discoloration that increased in intensity with dose and was still present in a dose-related manner following both recovery periods. Quercetin, at levels correlating with AGIQ dose, was measured in the urine following the 14-day exposure period and, at lower concentrations, 14 or 28 days following cessation of AGIQ exposure. All four metabolites were present in a dose-dependent manner in the femur following 14 days of dietary exposure; only quercetin, quercetin 3-O-glucuronide, and 3-o-methylquercetin were present during the recovery periods. Quercetin, quercetin 3-O-glucuronide, and 3-o-methylquercetin were detected in white fat (along with kaempferol), brown fat (excluding quercetin due to analytical interference), and cerebrum samples, indicating systemic availability of the metabolites. Collectively, these data implicate quercetin, quercetin 3-O-glucuronide, or 3-o-methylquercetin (or a combination thereof) as the most likely metabolite of AGIQ causing the yellow discoloration of bone in rats administered dietary AGIQ.


Asunto(s)
Fémur/efectos de los fármacos , Trastornos de la Pigmentación/inducido químicamente , Pigmentación/efectos de los fármacos , Quercetina/toxicidad , Animales , Biotransformación , Femenino , Fémur/patología , Trastornos de la Pigmentación/patología , Quercetina/análogos & derivados , Quercetina/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo
6.
Regul Toxicol Pharmacol ; 107: 104427, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31336127

RESUMEN

The Canadian Domestic Substances List (DSL) contains chemicals that have not been tested for genotoxicity as their use pre-dates regulatory requirements. In the present study, (quantitative) structure-activity relationships ((Q)SAR) model predictions and in vitro tests were conducted for genotoxicity assessment of 13 data-poor chemicals from the DSL (i.e. CAS numbers 19286-75-0, 13676-91-0, 2478-20-8, 6408-20-8, 74499-36-8, 26694-69-9, 29036-02-0, 120-24-1, 84696-48-9, 4051-63-2, 5718-26-3, 632-51-9, and 600-14-6). First, chemicals were screened by (Q)SAR models in Leadscope® and OASIS TIMES; two chemicals were excluded from (Q)SAR as they are complex mixtures. Six were flagged by (Q)SAR as potentially mutagenic and were subsequently confirmed as mutagens using the Ames assay. Of nine chemicals with clastogenic (Q)SAR flags, eight induced micronuclei in TK6 cells. Benchmark dose analysis was used to evaluate the potency of the chemicals. Four chemicals were bacterial mutagens with similar potencies. Three chemicals were more potent in micronuclei induction than the prototype alkylating agent methyl methanesulfonate and three were equipotent to the mutagenic carcinogen benzo[a]pyrene in the presence of rat liver S9. Overall, 11 of the 13 DSL chemicals demonstrated at least one type of genotoxicity in vitro. This study demonstrates the application of genotoxic potency analysis for prioritizing further investigations.


Asunto(s)
Modelos Teóricos , Mutágenos/toxicidad , Animales , Línea Celular , Simulación por Computador , Cricetulus , Humanos , Pruebas de Mutagenicidad , Mutágenos/química , Relación Estructura-Actividad Cuantitativa
7.
Regul Toxicol Pharmacol ; 95: 75-90, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29475067

RESUMEN

Acrylamide (AA) exposure causes increased incidence of forestomach, lung, and Harderian gland tumors in male mice. One hypothesized mode of action (MOA) for AA-carcinogenicity includes genotoxicity/mutagenicity as a key event, possibly resulting from AA metabolism to the direct genotoxic metabolite glycidamide. Alternatively, altered calcium signaling (CS) has been proposed as a central key event in the MOA. To examine the plausibility of these proposed MOAs, RNA-sequencing was performed on tumor target tissues: Harderian glands (the most sensitive tumor target tissue in the rodent 2-year cancer bioassay) and lungs of AA-exposed male CD-1 mice. Animals were exposed to 0.0, 1.5, 3.0, 6.0, 12.0, or 24.0 mg AA/kg bw-day in drinking water for 5, 15, or 31 days. We observed a pronounced effect on genes involved in CS and cytoskeletal processes in both tissues, but no evidence supporting a genotoxic MOA. Benchmark dose modeling suggests transcriptional points of departure (PODs) of 0.54 and 2.21 mg/kg bw-day for the Harderian glands and lungs, respectively. These are concordant with PODs of 0.17 and 1.27 mg/kg bw-day derived from the cancer bioassay data for these tissues in male mice, respectively. Overall, this study supports the involvement of CS in AA-induced mouse carcinogenicity, which is consistent with a recently proposed CS-based MOA in rat thyroid, and with other published reports of aberrant CS in malignant tumors in rodents and humans.


Asunto(s)
Acrilamida/toxicidad , Señalización del Calcio/efectos de los fármacos , Glándula de Harder/efectos de los fármacos , Pulmón/efectos de los fármacos , Neoplasias/inducido químicamente , Neoplasias/genética , Animales , Señalización del Calcio/genética , Perfilación de la Expresión Génica , Glándula de Harder/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Neoplasias/metabolismo , Análisis de Secuencia de ARN , Transcriptoma
8.
Int J Toxicol ; 36(2): 124-132, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28403741

RESUMEN

Acrylamide (AA) at high exposure levels is neurotoxic, induces testicular toxicity, and increases dominant lethal mutations in rats. RNA-sequencing in testes was used to identify differentially expressed genes (DEG), explore AA-induced pathway perturbations that could contribute to AA-induced testicular toxicity and then used to derive a benchmark dose (BMD). Male F344/DuCrl rats were administered 0.0, 0.5, 1.5, 3.0, 6.0, or 12.0 mg AA/kg bw/d in drinking water for 5, 15, or 31 days. The experimental design used exposure levels that spanned and exceeded the exposure levels used in the rat dominant lethal, 2-generation reproductive toxicology, and cancer bioassays. The time of sample collection was based on previous studies that developed gene expression-based BMD. At 12.0 mg/kg, there were 38, 33, and 65 DEG ( P value <.005; fold change >1.5) in the testes after 5, 15, or 31 days of exposure, respectively. At 31 days, there was a dose-dependent increase in the number of DEG, and at 12.0 mg/kg/d the top three functional clusters affected by AA exposure were actin filament organization, response to calcium ion, and regulation of cell proliferation. The BMD lower 95% confidence limit using DEG ranged from 1.8 to 6.8 mg/kg compared to a no-observed-adverse-effect-level of 2.0 mg/kg/d for male reproductive toxicity. These results are consistent with the known effects of AA on calcium signaling and cytoskeletal actin filaments leading to neurotoxicity and suggest that AA can cause rat dominant lethal mutations by these same mechanisms leading to impaired chromosome segregation during cell division.


Asunto(s)
Acrilamida/toxicidad , Señalización del Calcio/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratas Endogámicas F344 , Testículo/metabolismo
9.
Mutagenesis ; 31(6): 617-626, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27338305

RESUMEN

Acrylamide is used in many industrial processes and is present in a variety of fried and baked foods. In rodent carcinogenicity assays, acrylamide exposure leads to tumour formation at doses lower than those demonstrated to induce genotoxic damage. We evaluated the potential of acrylamide to induce structural DNA damage and gene mutations in rodents using highly sensitive flow cytometric analysis of micronucleus and Pig-a mutant frequencies, respectively. Male F344 rats and B6C3F1 mice were administered acrylamide in drinking water for 30 days at doses spanning and exceeding the range of acrylamide exposure tested in cancer bioassays-top dose of 12.0 and 24.0mg/kg/day in mice and in rats, respectively. A positive control, N-ethyl-N-nitrosourea, was administered at the beginning and end of the study to meet the expression time for the two DNA damage phenotypes. The results of the micronucleus and Pig-a assays were negative and equivocal, respectively, for male rats exposed to acrylamide at the concentrations tested. In contrast, acrylamide induced a dose-dependent increase in micronucleus formation but tested negative in the Pig-a assay in mice. Higher plasma concentrations of glycidamide in mice than rats are hypothesized to explain, at least in part, the differences in the response. Benchmark dose modelling indicates that structural DNA damage as opposed to point mutations is most relevant to the genotoxic mode of action of acrylamide-induced carcinogenicity. Moreover, the lack of genotoxicity detected at <6.0mg/kg/day is consistent with the notion that non-genotoxic mechanisms contribute to acrylamide-induced carcinogenicity in rodents.


Asunto(s)
Acrilamida/toxicidad , Daño del ADN , Micronúcleos con Defecto Cromosómico/inducido químicamente , Mutación , Acrilamida/farmacología , Animales , ADN/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos , Pruebas de Mutagenicidad , Ratas , Ratas Endogámicas F344
10.
Crit Rev Toxicol ; 45(1): 1-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25605026

RESUMEN

Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.


Asunto(s)
Benzo(a)pireno/toxicidad , Medición de Riesgo/métodos , Toxicogenética/métodos , Animales , Carcinógenos/toxicidad , Agua Potable/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Genómica/métodos , Humanos , Ratones , Especificidad de la Especie
11.
Toxicol Appl Pharmacol ; 274(1): 63-77, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24183702

RESUMEN

Furan is a chemical hepatocarcinogen in mice and rats. Its previously postulated cancer mode of action (MOA) is chronic cytotoxicity followed by sustained regenerative proliferation; however, its molecular basis is unknown. To this end, we conducted toxicogenomic analysis of B3C6F1 mouse livers following three week exposures to non-carcinogenic (0, 1, 2mg/kgbw) or carcinogenic (4 and 8mg/kgbw) doses of furan. We saw enrichment for pathways responsible for cytotoxicity: stress-activated protein kinase (SAPK) and death receptor (DR5 and TNF-alpha) signaling, and proliferation: extracellular signal-regulated kinases (ERKs) and TNF-alpha. We also noted the involvement of NF-kappaB and c-Jun in response to furan, which are genes that are known to be required for liver regeneration. Furan metabolism by CYP2E1 produces cis-2-butene-1,4-dial (BDA), which is required for ensuing cytotoxicity and oxidative stress. NRF2 is a master regulator of gene expression during oxidative stress and we suggest that chronic NFR2 activity and chronic inflammation may represent critical transition events between the adaptive (regeneration) and adverse (cancer) outcomes. Another objective of this study was to demonstrate the applicability of toxicogenomics data in quantitative risk assessment. We modeled benchmark doses for our transcriptional data and previously published cancer data, and observed consistency between the two. Margin of exposure values for both transcriptional and cancer endpoints were also similar. In conclusion, using furan as a case study we have demonstrated the value of toxicogenomics data in elucidating dose-dependent MOA transitions and in quantitative risk assessment.


Asunto(s)
Carcinógenos/toxicidad , Furanos/toxicidad , Perfilación de la Expresión Génica/métodos , Hepatocitos/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Medición de Riesgo
12.
Environ Mol Mutagen ; 64(8-9): 458-465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37704589

RESUMEN

We are evaluating the use of metabolically competent HepaRG™ cells combined with CometChip® for DNA damage and the micronucleus (MN) assay as a New Approach Methodology (NAM) alternative to animals for follow up genotoxicity assessment to in vitro positive genotoxic response. Naphthalene is genotoxic in human TK6 cells inducing a nonlinear dose-response for the induction of micronuclei in the presence of rat liver S9. of naphthalene. In HepaRG™ cells, naphthalene genotoxicity was assessed using either 6 (CometChip™) or 12 concentrations of naphthalene (MN assay) with the top dose used for assessment of genotoxicity for the Comet and MN assay was 1.25 and 1.74 mM respectively, corresponding to approximately 45% cell survival. In contrast to human TK6 cell with S9, naphthalene was not genotoxic in either the HepaRG™ MN assay or the Comet assay using CometChip®. The lack of genotoxicity in both the MN and comet assays in HepaRG™ cells is likely due to Phase II enzymes removing phenols preventing further bioactivation to quinones and efficient detoxication of naphthalene quinones or epoxides by glutathione conjugation. In contrast to CYP450 mediated metabolism, these Phase II enzymes are inactive in rat liver S9 due to lack of appropriate cofactors causing a positive genotoxic response. Rat liver S9-derived BMD10 over-predicts naphthalene genotoxicity when compared to the negative genotoxic response observed in HepaRG™ cells. Metabolically competent hepatocyte models like HepaRG™ cells should be considered as human-relevant NAMs for use genotoxicity assessments to reduce reliance on rodents.


Asunto(s)
Daño del ADN , Mutágenos , Ratas , Animales , Humanos , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Estudios de Seguimiento , Ensayo Cometa/métodos , Naftalenos/toxicidad , Quinonas
13.
Toxicology ; 499: 153642, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37863466

RESUMEN

New Approach Methodologies (NAMs) are being widely used to reduce, refine, and replace, animal use in studying toxicology. For respiratory toxicology, this includes both in silico and in vitro alternatives to replace traditional in vivo inhalation studies. 1,3-Dichloropropene (1,3-DCP) is a volatile organic compound that is widely used in agriculture as a pre-planting fumigant. Short-term exposure of humans to 1,3-DCP can result in mucous membrane irritation, chest pain, headache, and dizziness. In our previous work, we exposed differentiated cells representing different parts of the respiratory epithelium to 1,3-DCP vapor, measured cytotoxicity, and did In Vitro to In Vivo Extrapolation (IVIVE). We have extended our previous study with 1,3-DCP vapors by conducting transcriptomics on acutely exposed nasal cultures and have implemented a separate 5-day repeated exposure with multiple endpoints to gain further molecular insight into our model. MucilAir™ Nasal cell culture models, representing the nasal epithelium, were exposed to six sub-cytotoxic concentrations of 1,3-DCP vapor at the air-liquid interface, and the nasal cultures were analyzed by different methodologies, including histology, transcriptomics, and glutathione (GSH) -depletion assays. We observed the dose-dependent effect of 1,3-DCP in terms of differential gene expression, change in cellular morphology from pseudostratified columnar epithelium to squamous epithelium, and depletion of GSH in MucilAir™ nasal cultures. The MucilAir™ nasal cultures were also exposed to 3 concentrations of 1,3-DCP using repeated exposure 4 h per day for 5 days and the histological analyses indicated changes in cellular morphology and a decrease in ciliated bodies and an increase in apoptotic bodies, with increasing concentrations of 1,3-DCP. Altogether, our results suggest that sub-cytotoxic exposures to 1,3-DCP lead to several molecular and cellular perturbations, providing significant insight into the mode-of-action (MoA) of 1,3-DCP using an innovative NAM model.


Asunto(s)
Compuestos Alílicos , Hidrocarburos Clorados , Plaguicidas , Humanos , Animales , Determinación de Punto Final , Administración por Inhalación , Compuestos Alílicos/toxicidad , Compuestos Alílicos/metabolismo , Hidrocarburos Clorados/toxicidad , Exposición por Inhalación/efectos adversos
14.
Toxicol Lett ; 384: 105-114, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517673

RESUMEN

To reduce reliance on long-term in vivo studies, short-term data linking early molecular-based measurements to later adverse health effects is needed. Although transcriptional-based benchmark dose (BMDT) modeling has been used to estimate potencies and stratify chemicals based on potential to induce later-life effects, dose-responsive epigenetic alterations have not been routinely considered. Here, we evaluated the utility of microRNA (miRNA) profiling in mouse liver and blood, as well as in mouse primary hepatocytes in vitro, to indicate mechanisms of liver perturbation due to short-term exposure of the known rodent liver hepatotoxicant and carcinogen, furan. Benchmark dose modeling of miRNA measurements (BMDmiR) were compared to the referent transcriptional (BMDT) and apical (BMDA) estimates. These analyses indicate a robust dose response for 34 miRNAs to furan and involvement of p53-linked pathways in furan-mediated hepatotoxicity, supporting mRNA and apical measurements. Liver-sourced miRNAs were also altered in the blood and primary hepatocytes. Overall, these results indicate mechanistic involvement of miRNA in furan carcinogenicity and provide evidence of their potential utility as accessible biomarkers of exposure and disease.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Roedores/genética , Hígado/metabolismo , Hepatocitos/metabolismo , Furanos/toxicidad , Furanos/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-37491114

RESUMEN

Error-corrected duplex sequencing (DS) enables direct quantification of low-frequency mutations and offers tremendous potential for chemical mutagenicity assessment. We investigated the utility of DS to quantify induced mutation frequency (MF) and spectrum in human lymphoblastoid TK6 cells exposed to a prototypical DNA alkylating agent, N-ethyl-N-nitrosourea (ENU). Furthermore, we explored appropriate experimental parameters for this application, and assessed inter-laboratory reproducibility. In two independent experiments in two laboratories, TK6 cells were exposed to ENU (25-200 µM) and DNA was sequenced 48, 72, and 96 h post-exposure. A DS mutagenicity panel targeting twenty 2.4-kb regions distributed across the genome was used to sample diverse, genome-representative sequence contexts. A significant increase in MF that was unaffected by time was observed in both laboratories. Concentration-response in the MF from the two laboratories was strongly positively correlated (r = 0.97). C:G>T:A, T:A>C:G, T:A>A:T, and T:A>G:C mutations increased in consistent, concentration-dependent manners in both laboratories, with high proportions of C:G>T:A at all time points. The consistent results across the three time points suggest that 48 h may be sufficient for mutation analysis post-exposure. The target sites responded similarly between the two laboratories and revealed a higher average MF in intergenic regions. These results, demonstrating remarkable reproducibility across time and laboratory for both MF and spectrum, support the high value of DS for characterizing chemical mutagenicity in both research and regulatory evaluation.


Asunto(s)
ADN , Mutágenos , Humanos , Reproducibilidad de los Resultados , Mutación , Mutágenos/toxicidad , Mutagénesis , Etilnitrosourea
16.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214853

RESUMEN

Duplex sequencing (DuplexSeq) is an error-corrected next-generation sequencing (ecNGS) method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors by comparing grouped strand sequencing reads. The resulting background of less than one artifactual mutation per 10 7 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DuplexSeq-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays. HIGHLIGHTS: DuplexSeq is an ultra-accurate NGS technology that directly quantifies mutationsENU-dependent mutagenesis was detected 24 h post-exposure in proliferative tissuesMultiple tissues exhibited the canonical ENU mutation spectrum 7 d after exposureResults obtained with DuplexSeq were highly concordant between laboratoriesThe Rat-50 Mutagenesis Assay is promising for applications in genetic toxicology.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37770135

RESUMEN

Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues⁠, a considerable advancement compared to currently used in vivo gene mutation assays.


Asunto(s)
Etilnitrosourea , Compuestos de Nitrosourea , Ratas , Masculino , Animales , Etilnitrosourea/toxicidad , Reproducibilidad de los Resultados , Ratas Sprague-Dawley , Mutagénesis , Mutación , Mutágenos/toxicidad
18.
Mutat Res ; 723(2): 108-20, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21182982

RESUMEN

A working group convened at the 2009 5th IWGT to discuss possibilities for improving in vivo genotoxicity assessment by investigating possible links to standard toxicity testing. The working group considered: (1) combination of acute micronucleus (MN) and Comet assays into a single study, (2) integration of MN assays into repeated-dose toxicity (RDT) studies, (3) integration of Comet assays into RDT studies, and (4) requirements for the top dose when integrating genotoxicity measurements into RDT studies. The working group reviewed current requirements for in vivo genotoxicity testing of different chemical product classes and identified opportunities for combination and integration of genotoxicity endpoints for each class. The combination of the acute in vivo MN and Comet assays was considered by the working group to represent a technically feasible and scientifically acceptable alternative to conducting independent assays. Two combination protocols, consisting of either a 3- or a 4-treament protocol, were considered equally acceptable. As the integration of MN assays into RDT studies had already been discussed in detail in previous IWGT meetings, the working group focussed on factors that could affect the results of the integrated MN assay, such as the possible effects of repeated bleeding and the need for early harvests. The working group reached the consensus that repeated bleeding at reasonable volumes is not a critical confounding factor for the MN assay in rats older than 9 weeks of age and that rats bled for toxicokinetic investigations or for other routine toxicological purposes can be used for MN analysis. The working group considered the available data as insufficient to conclude that there is a need for an early sampling point for MN analysis in RDT studies, in addition to the routine determination at terminal sacrifice. Specific scenarios were identified where an additional early sampling can have advantages, e.g., for compounds that exert toxic effects on hematopoiesis, including some aneugens. For the integration of Comet assays into RDT studies, the working group reached the consensus that, based upon the limited amount of data available, integration is scientifically acceptable and that the liver Comet assay can complement the MN assay in blood or bone marrow in detecting in vivo genotoxins. Practical issues need to be considered when conducting an integrated Comet assay study. Freezing of tissue samples for later Comet assay analysis could alleviate logistical problems. However, the working group concluded that freezing of tissue samples can presently not be recommended for routine use, although it was noted that results from some laboratories look promising. Another discussion topic centred around the question as to whether tissue toxicity, which is more likely observed in RDT than in acute toxicity studies, would affect the results of the Comet assay. Based on the available data from in vivo studies, the working group concluded that there are no clear examples where cytotoxicity, by itself, generates increases or decreases in DNA migration. The working group identified the need for a refined guidance on the use and interpretation of cytotoxicity methods used in the Comet assay, as the different methods used generally lead to inconsistent conclusions. Since top doses in RDT studies often are limited by toxicity that occurs only after several doses, the working group discussed whether the sensitivity of integrated genotoxicity studies is reduced under these circumstances. For compounds for which in vitro genotoxicity studies yielded negative results, the working group reached the consensus that integration of in vivo genotoxicity endpoints (typically the MN assay) into RDT studies is generally acceptable. If in vitro genotoxicity results are unavailable or positive, consensus was reached that the maximum tolerated dose (MTD) is acceptable as the top dose in RDT studies in many cases, such as when the RDT study MTD or exposure is close (50% or greater) to an acute study MTD or exposure. Finally, the group agreed that exceptions to this general rule might be acceptable, for example when human exposure is lower than the preclinical exposure by a large margin.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Animales , Ensayo Cometa/métodos , Humanos , Pruebas de Micronúcleos/métodos , Ratas , Pruebas de Toxicidad/normas
19.
Toxicol In Vitro ; 72: 105097, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33476716

RESUMEN

Bisphenol A (BPA) is a chemical used in the manufacturing of plastics to which human exposure is ubiquitous. Numerous studies have linked BPA exposure to many adverse health outcomes prompting the replacement of BPA with various analogues including bisphenol-F (BPF) and bisphenol S (BPS). Other bisphenols are used in various consumer applications, such as 3,3',5,5'-Tetrabromobisphenol A (TBBPA), which is used as a flame retardant. Few studies to date have examined the effects of BPA and its analogues in stem cells to explore potential developmental impacts. Here we used transcriptomics to investigate similarities and differences of BPA and three of its analogues in the estrogen receptor negative, human embryonic stem cell line H9 (WA09). H9 cells were exposed to increasing concentrations of the bisphenols and analyzed using RNA-sequencing. Our data indicate that BPA, BPF, and BPS have similar potencies in inducing transcriptional changes and perturb many of the same pathways. TBBPA, the least structurally similar bisphenol of the group, exhibited much lower potency. All bisphenols robustly impacted gene expression in these cells, albeit at concentrations well above those observed in estrogen-positive cells. Overall, we provide a foundational data set against which to explore the transcriptional similarities of other bisphenols in embryonic stem cells, which may be used to assess the suitability of chemical grouping for read-across and for preliminary potency evaluation.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Células Madre Embrionarias Humanas/efectos de los fármacos , Fenoles/toxicidad , Bifenilos Polibrominados/toxicidad , Sulfonas/toxicidad , Transcriptoma/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , RNA-Seq , Medición de Riesgo
20.
Front Public Health ; 9: 694834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485225

RESUMEN

Higher-throughput, mode-of-action-based assays provide a valuable approach to expedite chemical evaluation for human health risk assessment. In this study, we combined the high-throughput alkaline DNA damage-sensing CometChip® assay with the TGx-DDI transcriptomic biomarker (DDI = DNA damage-inducing) using high-throughput TempO-Seq®, as an integrated genotoxicity testing approach. We used metabolically competent differentiated human HepaRG™ cell cultures to enable the identification of chemicals that require bioactivation to cause genotoxicity. We studied 12 chemicals (nine DDI, three non-DDI) in increasing concentrations to measure and classify chemicals based on their ability to damage DNA. The CometChip® classified 10/12 test chemicals correctly, missing a positive DDI call for aflatoxin B1 and propyl gallate. The poor detection of aflatoxin B1 adducts is consistent with the insensitivity of the standard alkaline comet assay to bulky lesions (a shortcoming that can be overcome by trapping repair intermediates). The TGx-DDI biomarker accurately classified 10/12 agents. TGx-DDI correctly identified aflatoxin B1 as DDI, demonstrating efficacy for combined used of these complementary methodologies. Zidovudine, a known DDI chemical, was misclassified as it inhibits transcription, which prevents measurable changes in gene expression. Eugenol, a non-DDI chemical known to render misleading positive results at high concentrations, was classified as DDI at the highest concentration tested. When combined, the CometChip® assay and the TGx-DDI biomarker were 100% accurate in identifying chemicals that induce DNA damage. Quantitative benchmark concentration (BMC) modeling was applied to evaluate chemical potencies for both assays. The BMCs for the CometChip® assay and the TGx-DDI biomarker were highly concordant (within 4-fold) and resulted in identical potency rankings. These results demonstrate that these two assays can be integrated for efficient identification and potency ranking of DNA damaging agents in HepaRG™ cell cultures.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Técnicas de Cultivo de Célula , Línea Celular , Marcadores Genéticos , Humanos , Mutágenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA