Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 145(2): 122-133, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34743566

RESUMEN

BACKGROUND: Artificial intelligence (AI)-enabled analysis of 12-lead ECGs may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains unclear whether AI provides meaningful and generalizable improvement in predictive accuracy beyond clinical risk factors for AF. METHODS: We trained a convolutional neural network (ECG-AI) to infer 5-year incident AF risk using 12-lead ECGs in patients receiving longitudinal primary care at Massachusetts General Hospital (MGH). We then fit 3 Cox proportional hazards models, composed of ECG-AI 5-year AF probability, CHARGE-AF clinical risk score (Cohorts for Heart and Aging in Genomic Epidemiology-Atrial Fibrillation), and terms for both ECG-AI and CHARGE-AF (CH-AI), respectively. We assessed model performance by calculating discrimination (area under the receiver operating characteristic curve) and calibration in an internal test set and 2 external test sets (Brigham and Women's Hospital [BWH] and UK Biobank). Models were recalibrated to estimate 2-year AF risk in the UK Biobank given limited available follow-up. We used saliency mapping to identify ECG features most influential on ECG-AI risk predictions and assessed correlation between ECG-AI and CHARGE-AF linear predictors. RESULTS: The training set comprised 45 770 individuals (age 55±17 years, 53% women, 2171 AF events) and the test sets comprised 83 162 individuals (age 59±13 years, 56% women, 2424 AF events). Area under the receiver operating characteristic curve was comparable using CHARGE-AF (MGH, 0.802 [95% CI, 0.767-0.836]; BWH, 0.752 [95% CI, 0.741-0.763]; UK Biobank, 0.732 [95% CI, 0.704-0.759]) and ECG-AI (MGH, 0.823 [95% CI, 0.790-0.856]; BWH, 0.747 [95% CI, 0.736-0.759]; UK Biobank, 0.705 [95% CI, 0.673-0.737]). Area under the receiver operating characteristic curve was highest using CH-AI (MGH, 0.838 [95% CI, 0.807 to 0.869]; BWH, 0.777 [95% CI, 0.766 to 0.788]; UK Biobank, 0.746 [95% CI, 0.716 to 0.776]). Calibration error was low using ECG-AI (MGH, 0.0212; BWH, 0.0129; UK Biobank, 0.0035) and CH-AI (MGH, 0.012; BWH, 0.0108; UK Biobank, 0.0001). In saliency analyses, the ECG P-wave had the greatest influence on AI model predictions. ECG-AI and CHARGE-AF linear predictors were correlated (Pearson r: MGH, 0.61; BWH, 0.66; UK Biobank, 0.41). CONCLUSIONS: AI-based analysis of 12-lead ECGs has similar predictive usefulness to a clinical risk factor model for incident AF and the approaches are complementary. ECG-AI may enable efficient quantification of future AF risk.


Asunto(s)
Fibrilación Atrial/diagnóstico , Aprendizaje Profundo/normas , Electrocardiografía/métodos , Fibrilación Atrial/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
2.
JAMA Cardiol ; 9(2): 174-181, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37950744

RESUMEN

Importance: The gold standard for outcome adjudication in clinical trials is medical record review by a physician clinical events committee (CEC), which requires substantial time and expertise. Automated adjudication of medical records by natural language processing (NLP) may offer a more resource-efficient alternative but this approach has not been validated in a multicenter setting. Objective: To externally validate the Community Care Cohort Project (C3PO) NLP model for heart failure (HF) hospitalization adjudication, which was previously developed and tested within one health care system, compared to gold-standard CEC adjudication in a multicenter clinical trial. Design, Setting, and Participants: This was a retrospective analysis of the Influenza Vaccine to Effectively Stop Cardio Thoracic Events and Decompensated Heart Failure (INVESTED) trial, which compared 2 influenza vaccines in 5260 participants with cardiovascular disease at 157 sites in the US and Canada between September 2016 and January 2019. Analysis was performed from November 2022 to October 2023. Exposures: Individual sites submitted medical records for each hospitalization. The central INVESTED CEC and the C3PO NLP model independently adjudicated whether the cause of hospitalization was HF using the prepared hospitalization dossier. The C3PO NLP model was fine-tuned (C3PO + INVESTED) and a de novo NLP model was trained using half the INVESTED hospitalizations. Main Outcomes and Measures: Concordance between the C3PO NLP model HF adjudication and the gold-standard INVESTED CEC adjudication was measured by raw agreement, κ, sensitivity, and specificity. The fine-tuned and de novo INVESTED NLP models were evaluated in an internal validation cohort not used for training. Results: Among 4060 hospitalizations in 1973 patients (mean [SD] age, 66.4 [13.2] years; 514 [27.4%] female and 1432 [72.6%] male]), 1074 hospitalizations (26%) were adjudicated as HF by the CEC. There was good agreement between the C3PO NLP and CEC HF adjudications (raw agreement, 87% [95% CI, 86-88]; κ, 0.69 [95% CI, 0.66-0.72]). C3PO NLP model sensitivity was 94% (95% CI, 92-95) and specificity was 84% (95% CI, 83-85). The fine-tuned C3PO and de novo NLP models demonstrated agreement of 93% (95% CI, 92-94) and κ of 0.82 (95% CI, 0.77-0.86) and 0.83 (95% CI, 0.79-0.87), respectively, vs the CEC. CEC reviewer interrater reproducibility was 94% (95% CI, 93-95; κ, 0.85 [95% CI, 0.80-0.89]). Conclusions and Relevance: The C3PO NLP model developed within 1 health care system identified HF events with good agreement relative to the gold-standard CEC in an external multicenter clinical trial. Fine-tuning the model improved agreement and approximated human reproducibility. Further study is needed to determine whether NLP will improve the efficiency of future multicenter clinical trials by identifying clinical events at scale.

3.
Eur J Prev Cardiol ; 31(2): 252-262, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37798122

RESUMEN

AIMS: To leverage deep learning on the resting 12-lead electrocardiogram (ECG) to estimate peak oxygen consumption (V˙O2peak) without cardiopulmonary exercise testing (CPET). METHODS AND RESULTS: V ˙ O 2 peak estimation models were developed in 1891 individuals undergoing CPET at Massachusetts General Hospital (age 45 ± 19 years, 38% female) and validated in a separate test set (MGH Test, n = 448) and external sample (BWH Test, n = 1076). Three penalized linear models were compared: (i) age, sex, and body mass index ('Basic'), (ii) Basic plus standard ECG measurements ('Basic + ECG Parameters'), and (iii) basic plus 320 deep learning-derived ECG variables instead of ECG measurements ('Deep ECG-V˙O2'). Associations between estimated V˙O2peak and incident disease were assessed using proportional hazards models within 84 718 primary care patients without CPET. Inference ECGs preceded CPET by 7 days (median, interquartile range 27-0 days). Among models, Deep ECG-V˙O2 was most accurate in MGH Test [r = 0.845, 95% confidence interval (CI) 0.817-0.870; mean absolute error (MAE) 5.84, 95% CI 5.39-6.29] and BWH Test (r = 0.552, 95% CI 0.509-0.592, MAE 6.49, 95% CI 6.21-6.67). Deep ECG-V˙O2 also outperformed the Wasserman, Jones, and FRIEND reference equations (P < 0.01 for comparisons of correlation). Performance was higher in BWH Test when individuals with heart failure (HF) were excluded (r = 0.628, 95% CI 0.567-0.682; MAE 5.97, 95% CI 5.57-6.37). Deep ECG-V˙O2 estimated V˙O2peak <14 mL/kg/min was associated with increased risks of incident atrial fibrillation [hazard ratio 1.36 (95% CI 1.21-1.54)], myocardial infarction [1.21 (1.02-1.45)], HF [1.67 (1.49-1.88)], and death [1.84 (1.68-2.03)]. CONCLUSION: Deep learning-enabled analysis of the resting 12-lead ECG can estimate exercise capacity (V˙O2peak) at scale to enable efficient cardiovascular risk stratification.


Researchers here present data describing a method of estimating exercise capacity from the resting electrocardiogram. Electrocardiogram estimation of exercise capacity was accurate and was found to predict the onset of the wide range of cardiovascular diseases including heart attacks, heart failure, arrhythmia, and death.This approach offers the ability to estimate exercise capacity without dedicated exercise testing and may enable efficient risk stratification of cardiac patients at scale.


Asunto(s)
Electrocardiografía , Insuficiencia Cardíaca , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , Pronóstico , Prueba de Esfuerzo/métodos , Consumo de Oxígeno
4.
Cardiovasc Digit Health J ; 4(2): 48-59, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37101945

RESUMEN

Background: Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clinical care. Objective: To evaluate if artificial intelligence-enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detection and classification of LVH. Methods: We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had cardiac diseases associated with LVH (n = 50,709), including cardiac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead representations using logistic regression ("LVH-Net"). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I ("LVH-Net Lead I") or lead II ("LVH-Net Lead II") from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH. Results: The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93-0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90-0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hypertensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiologies well. Conclusion: An artificial intelligence-enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.

5.
J Am Coll Cardiol ; 82(20): 1936-1948, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37940231

RESUMEN

BACKGROUND: Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. OBJECTIVES: We developed a deep learning model to interpret echocardiograms and examined the association of deep learning-derived echocardiographic measures with incident outcomes. METHODS: We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. RESULTS: Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. CONCLUSIONS: Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.


Asunto(s)
Fibrilación Atrial , Aprendizaje Profundo , Insuficiencia Cardíaca , Humanos , Volumen Sistólico , Función Ventricular Izquierda , Estudios Retrospectivos
6.
Circ Genom Precis Med ; 16(4): 340-349, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37278238

RESUMEN

BACKGROUND: Artificial intelligence (AI) models applied to 12-lead ECG waveforms can predict atrial fibrillation (AF), a heritable and morbid arrhythmia. However, the factors forming the basis of risk predictions from AI models are usually not well understood. We hypothesized that there might be a genetic basis for an AI algorithm for predicting the 5-year risk of new-onset AF using 12-lead ECGs (ECG-AI)-based risk estimates. METHODS: We applied a validated ECG-AI model for predicting incident AF to ECGs from 39 986 UK Biobank participants without AF. We then performed a genome-wide association study (GWAS) of the predicted AF risk and compared it with an AF GWAS and a GWAS of risk estimates from a clinical variable model. RESULTS: In the ECG-AI GWAS, we identified 3 signals (P<5×10-8) at established AF susceptibility loci marked by the sarcomeric gene TTN and sodium channel genes SCN5A and SCN10A. We also identified 2 novel loci near the genes VGLL2 and EXT1. In contrast, the clinical variable model prediction GWAS indicated a different genetic profile. In genetic correlation analysis, the prediction from the ECG-AI model was estimated to have a higher correlation with AF than that from the clinical variable model. CONCLUSIONS: Predicted AF risk from an ECG-AI model is influenced by genetic variation implicating sarcomeric, ion channel and body height pathways. ECG-AI models may identify individuals at risk for disease via specific biological pathways.


Asunto(s)
Fibrilación Atrial , Aprendizaje Profundo , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad , Inteligencia Artificial , Estudio de Asociación del Genoma Completo , Electrocardiografía
7.
medRxiv ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37662283

RESUMEN

Background: The gold standard for outcome adjudication in clinical trials is chart review by a physician clinical events committee (CEC), which requires substantial time and expertise. Automated adjudication by natural language processing (NLP) may offer a more resource-efficient alternative. We previously showed that the Community Care Cohort Project (C3PO) NLP model adjudicates heart failure (HF) hospitalizations accurately within one healthcare system. Methods: This study externally validated the C3PO NLP model against CEC adjudication in the INVESTED trial. INVESTED compared influenza vaccination formulations in 5260 patients with cardiovascular disease at 157 North American sites. A central CEC adjudicated the cause of hospitalizations from medical records. We applied the C3PO NLP model to medical records from 4060 INVESTED hospitalizations and evaluated agreement between the NLP and final consensus CEC HF adjudications. We then fine-tuned the C3PO NLP model (C3PO+INVESTED) and trained a de novo model using half the INVESTED hospitalizations, and evaluated these models in the other half. NLP performance was benchmarked to CEC reviewer inter-rater reproducibility. Results: 1074 hospitalizations (26%) were adjudicated as HF by the CEC. There was high agreement between the C3PO NLP and CEC HF adjudications (agreement 87%, kappa statistic 0.69). C3PO NLP model sensitivity was 94% and specificity was 84%. The fine-tuned C3PO and de novo NLP models demonstrated agreement of 93% and kappa of 0.82 and 0.83, respectively. CEC reviewer inter-rater reproducibility was 94% (kappa 0.85). Conclusion: Our NLP model developed within a single healthcare system accurately identified HF events relative to the gold-standard CEC in an external multi-center clinical trial. Fine-tuning the model improved agreement and approximated human reproducibility. NLP may improve the efficiency of future multi-center clinical trials by accurately identifying clinical events at scale.

8.
JMIR Med Inform ; 10(9): e38178, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35960155

RESUMEN

BACKGROUND: Cardiac magnetic resonance imaging (CMR) is a powerful diagnostic modality that provides detailed quantitative assessment of cardiac anatomy and function. Automated extraction of CMR measurements from clinical reports that are typically stored as unstructured text in electronic health record systems would facilitate their use in research. Existing machine learning approaches either rely on large quantities of expert annotation or require the development of engineered rules that are time-consuming and are specific to the setting in which they were developed. OBJECTIVE: We hypothesize that the use of pretrained transformer-based language models may enable label-efficient numerical extraction from clinical text without the need for heuristics or large quantities of expert annotations. Here, we fine-tuned pretrained transformer-based language models on a small quantity of CMR annotations to extract 21 CMR measurements. We assessed the effect of clinical pretraining to reduce labeling needs and explored alternative representations of numerical inputs to improve performance. METHODS: Our study sample comprised 99,252 patients that received longitudinal cardiology care in a multi-institutional health care system. There were 12,720 available CMR reports from 9280 patients. We adapted PRAnCER (Platform Enabling Rapid Annotation for Clinical Entity Recognition), an annotation tool for clinical text, to collect annotations from a study clinician on 370 reports. We experimented with 5 different representations of numerical quantities and several model weight initializations. We evaluated extraction performance using macroaveraged F1-scores across the measurements of interest. We applied the best-performing model to extract measurements from the remaining CMR reports in the study sample and evaluated established associations between selected extracted measures with clinical outcomes to demonstrate validity. RESULTS: All combinations of weight initializations and numerical representations obtained excellent performance on the gold-standard test set, suggesting that transformer models fine-tuned on a small set of annotations can effectively extract numerical quantities. Our results further indicate that custom numerical representations did not appear to have a significant impact on extraction performance. The best-performing model achieved a macroaveraged F1-score of 0.957 across the evaluated CMR measurements (range 0.92 for the lowest-performing measure of left atrial anterior-posterior dimension to 1.0 for the highest-performing measures of left ventricular end systolic volume index and left ventricular end systolic diameter). Application of the best-performing model to the study cohort yielded 136,407 measurements from all available reports in the study sample. We observed expected associations between extracted left ventricular mass index, left ventricular ejection fraction, and right ventricular ejection fraction with clinical outcomes like atrial fibrillation, heart failure, and mortality. CONCLUSIONS: This study demonstrated that a domain-agnostic pretrained transformer model is able to effectively extract quantitative clinical measurements from diagnostic reports with a relatively small number of gold-standard annotations. The proposed workflow may serve as a roadmap for other quantitative entity extraction.

9.
Cardiovasc Digit Health J ; 3(4): 161-170, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36046430

RESUMEN

Background and Objective: Postexercise heart rate recovery (HRR) is an important indicator of cardiac autonomic function and abnormal HRR is associated with adverse outcomes. We hypothesized that deep learning on resting electrocardiogram (ECG) tracings may identify individuals with impaired HRR. Methods: We trained a deep learning model (convolutional neural network) to infer HRR based on resting ECG waveforms (HRRpred) among UK Biobank participants who had undergone exercise testing. We examined the association of HRRpred with incident cardiovascular disease using Cox models, and investigated the genetic architecture of HRRpred in genome-wide association analysis. Results: Among 56,793 individuals (mean age 57 years, 51% women), the HRRpred model was moderately correlated with actual HRR (r = 0.48, 95% confidence interval [CI] 0.47-0.48). Over a median follow-up of 10 years, we observed 2060 incident diabetes mellitus (DM) events, 862 heart failure events, and 2065 deaths. Higher HRRpred was associated with lower risk of DM (hazard ratio [HR] 0.79 per 1 standard deviation change, 95% CI 0.76-0.83), heart failure (HR 0.89, 95% CI 0.83-0.95), and death (HR 0.83, 95% CI 0.79-0.86). After accounting for resting heart rate, the association of HRRpred with incident DM and all-cause mortality were similar. Genetic determinants of HRRpred included known heart rate, cardiac conduction system, cardiomyopathy, and metabolic trait loci. Conclusion: Deep learning-derived estimates of HRR using resting ECG independently associated with future clinical outcomes, including new-onset DM and all-cause mortality. Inferring postexercise heart rate response from a resting ECG may have potential clinical implications and impact on preventive strategies warrants future study.

10.
NPJ Digit Med ; 5(1): 47, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396454

RESUMEN

Electronic health record (EHR) datasets are statistically powerful but are subject to ascertainment bias and missingness. Using the Mass General Brigham multi-institutional EHR, we approximated a community-based cohort by sampling patients receiving longitudinal primary care between 2001-2018 (Community Care Cohort Project [C3PO], n = 520,868). We utilized natural language processing (NLP) to recover vital signs from unstructured notes. We assessed the validity of C3PO by deploying established risk models for myocardial infarction/stroke and atrial fibrillation. We then compared C3PO to Convenience Samples including all individuals from the same EHR with complete data, but without a longitudinal primary care requirement. NLP reduced the missingness of vital signs by 31%. NLP-recovered vital signs were highly correlated with values derived from structured fields (Pearson r range 0.95-0.99). Atrial fibrillation and myocardial infarction/stroke incidence were lower and risk models were better calibrated in C3PO as opposed to the Convenience Samples (calibration error range for myocardial infarction/stroke: 0.012-0.030 in C3PO vs. 0.028-0.046 in Convenience Samples; calibration error for atrial fibrillation 0.028 in C3PO vs. 0.036 in Convenience Samples). Sampling patients receiving regular primary care and using NLP to recover missing data may reduce bias and maximize generalizability of EHR research.

12.
J Comput Biol ; 14(2): 144-55, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17456013

RESUMEN

Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH (multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.


Asunto(s)
Algoritmos , Aberraciones Cromosómicas , Biología Computacional/métodos , Cromatina/genética , Humanos , Hibridación Fluorescente in Situ , Diseño de Software
13.
J Feline Med Surg ; 19(6): 657-664, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27259538

RESUMEN

Objectives This study compared methods of mite retrieval from community cats in the Ohio River Valley region of the USA and determined incidence of parasitic mites in this region. Methods In total, 493 community cats were humanely trapped and anesthetized for a trap-neuter-return program. Cats received a dermatologic examination, ear swabs, superficial skin scraping, flea combing, acetate tape preparation and feces collection. All samples were examined microscopically. Large volumes of hair and scale from flea combing were dissolved in 10% potassium hydroxide and centrifuged with Sheather's solution. Fecal samples were mixed with Sheather's solution, filtered and centrifuged. Results Ear swabs were significantly ( P <0.05) better than other methods for finding chigger mites and Otodectes cynotis, and skin scraping was significantly better than ear swabs for finding Cheyletiella species. Only cats with O cynotis had clinical lesions. Mites remained identifiable for 6 months at room temperature. Mite incidence rates were as follows: Notoedres cati (1/493 cats), 0.002 (95% confidence interval [CI] 0-0.006); Lynxacarus radovskyi (2/493 cats), 0.004 (95% CI 0-0.01); Demodex gatoi (5/493 cats), 0.01 (95% CI 0.001-0.019); chigger mites (10/493 cats), 0.02 (95% CI 0.008-0.033); Cheyletiella species (12/493 cats), 0.024 (95% CI 0.011-0.038); and O cynotis (124/493 cats), 0.252 (95% CI 0.213-0.29). Conclusions and relevance Ear swabs are recommended when O cynotis or chigger mites are suspected. Skin scraping is more likely to yield positive results than ear swabs, but was not significantly better than acetate tape preparations, flea combing or fecal flotation for finding Cheyletiella species. Mites can remain identifiable for prolonged periods at room temperature. With the exception of O cynotis, the incidence of feline parasitic mites in the Ohio River Valley region of the USA is low; however, D gatoi and L radovskyi were present in the area and should be considered in cats with dermatologic disease attributable to them. In this population of community cats, asymptomatic carriage of mites was common.


Asunto(s)
Enfermedades de los Gatos/parasitología , Infestaciones por Ácaros/veterinaria , Ácaros/clasificación , Crianza de Animales Domésticos , Animales , Gatos , Oído/parasitología , Femenino , Indiana , Kentucky , Masculino , Infestaciones por Ácaros/parasitología , Manejo de Especímenes/veterinaria
14.
PLoS One ; 10(5): e0122420, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25970635

RESUMEN

RNA Polymerase II ChIA-PET data has revealed enhancers that are active in a profiled cell type and the genes that the enhancers regulate through chromatin interactions. The most commonly used computational method for analyzing ChIA-PET data, the ChIA-PET Tool, discovers interaction anchors at a spatial resolution that is insufficient to accurately identify individual enhancers. We introduce Germ, a computational method that estimates the likelihood that any two narrowly defined genomic locations are jointly occupied by RNA Polymerase II. Germ takes a blind deconvolution approach to simultaneously estimate the likelihood of RNA Polymerase II occupation as well as a model of the arrangement of read alignments relative to locations occupied by RNA Polymerase II. Both types of information are utilized to estimate the likelihood that RNA Polymerase II jointly occupies any two genomic locations. We apply Germ to RNA Polymerase II ChIA-PET data from embryonic stem cells to identify the genomic locations that are jointly occupied along with transcription start sites. We show that these genomic locations align more closely with features of active enhancers measured by ChIP-Seq than the locations identified using the ChIA-PET Tool. We also apply Germ to RNA Polymerase II ChIA-PET data from motor neuron progenitors. Based on the Germ results, we observe that a combination of cell type specific and cell type independent regulatory interactions are utilized by cells to regulate gene expression.


Asunto(s)
Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Genoma , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Programas Informáticos , Animales , Cromatina/química , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Mapeo Cromosómico/métodos , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Sitios Genéticos , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Cultivo Primario de Células , ARN Polimerasa II/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
15.
Nat Neurosci ; 16(9): 1191-1198, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955559

RESUMEN

Hox genes controlling motor neuron subtype identity are expressed in rostrocaudal patterns that are spatially and temporally collinear with their chromosomal organization. Here we demonstrate that Hox chromatin is subdivided into discrete domains that are controlled by rostrocaudal patterning signals that trigger rapid, domain-wide clearance of repressive histone H3 Lys27 trimethylation (H3K27me3) polycomb modifications. Treatment of differentiating mouse neural progenitors with retinoic acid leads to activation and binding of retinoic acid receptors (RARs) to the Hox1-Hox5 chromatin domains, which is followed by a rapid domain-wide removal of H3K27me3 and acquisition of cervical spinal identity. Wnt and fibroblast growth factor (FGF) signals induce expression of the Cdx2 transcription factor that binds and clears H3K27me3 from the Hox1-Hox9 chromatin domains, leading to specification of brachial or thoracic spinal identity. We propose that rapid clearance of repressive modifications in response to transient patterning signals encodes global rostrocaudal neural identity and that maintenance of these chromatin domains ensures the transmission of positional identity to postmitotic motor neurons later in development.


Asunto(s)
Tipificación del Cuerpo/genética , Cromatina/metabolismo , Genes Homeobox/fisiología , Neuronas Motoras/metabolismo , Transducción de Señal/genética , Animales , Encéfalo/citología , Factor de Transcripción CDX2 , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Cromatina/genética , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Neuronas Motoras/efectos de los fármacos , Mucoproteínas/genética , Células-Madre Neurales/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factores de Transcripción/metabolismo , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA