Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(3): e1010885, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972311

RESUMEN

Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process. Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model for integrating genetic and antigenic data, we identify the genetic changes in influenza A(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data into variable selection helps resolve ambiguities arising due to correlated signals, with the proportion of variables representing haemagglutinin positions decisively included, or excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by proximity to experimentally determined antigenic sites was improved simultaneously. Structure-guided variable selection thus improves confidence in the identification of genetic explanations of antigenic variation and we also show that prioritising the identification of causative mutations is not detrimental to the predictive capability of the analysis. Indeed, incorporating structural information into variable selection resulted in a model that could more accurately predict antigenic assay titres for phenotypically-uncharacterised virus from genetic sequence. Combined, these analyses have the potential to inform choices of reference viruses, the targeting of laboratory assays, and predictions of the evolutionary success of different genotypes, and can therefore be used to inform vaccine selection processes.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A/genética , Teorema de Bayes , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , SARS-CoV-2 , Antígenos Virales/genética , Genotipo , Fenotipo , Anticuerpos Antivirales/genética
2.
Proc Natl Acad Sci U S A ; 117(50): 31954-31962, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33229566

RESUMEN

Canine distemper virus (CDV) has recently emerged as an extinction threat for the endangered Amur tiger (Panthera tigris altaica). CDV is vaccine-preventable, and control strategies could require vaccination of domestic dogs and/or wildlife populations. However, vaccination of endangered wildlife remains controversial, which has led to a focus on interventions in domestic dogs, often assumed to be the source of infection. Effective decision making requires an understanding of the true reservoir dynamics, which poses substantial challenges in remote areas with diverse host communities. We carried out serological, demographic, and phylogenetic studies of dog and wildlife populations in the Russian Far East to show that a number of wildlife species are more important than dogs, both in maintaining CDV and as sources of infection for tigers. Critically, therefore, because CDV circulates among multiple wildlife sources, dog vaccination alone would not be effective at protecting tigers. We show, however, that low-coverage vaccination of tigers themselves is feasible and would produce substantive reductions in extinction risks. Vaccination of endangered wildlife provides a valuable component of conservation strategies for endangered species.


Asunto(s)
Moquillo/prevención & control , Especies en Peligro de Extinción/economía , Tigres/virología , Vacunación/economía , Vacunas Virales/administración & dosificación , Animales , Animales Salvajes/virología , Toma de Decisiones en la Organización , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Moquillo/epidemiología , Moquillo/transmisión , Moquillo/virología , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/inmunología , Perros/sangre , Perros/virología , Estudios de Factibilidad , Femenino , Masculino , Modelos Económicos , Filogenia , Estudios Seroepidemiológicos , Siberia , Tigres/sangre , Vacunación/métodos , Cobertura de Vacunación/economía , Cobertura de Vacunación/métodos , Cobertura de Vacunación/organización & administración , Vacunas Virales/economía
3.
J Virol ; 95(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268517

RESUMEN

Receptor recognition and binding is the first step of viral infection and a key determinant of host specificity. The inability of avian influenza viruses to effectively bind human-like sialylated receptors is a major impediment to their efficient transmission in humans and pandemic capacity. Influenza H9N2 viruses are endemic in poultry across Asia and parts of Africa where they occasionally infect humans and are therefore considered viruses with zoonotic potential. We previously described H9N2 viruses, including several isolated from human zoonotic cases, showing a preference for human-like receptors. Here we take a mutagenesis approach, making viruses with single or multiple substitutions in H9 haemagglutinin and test binding to avian and human receptor analogues using biolayer interferometry. We determine the genetic basis of preferences for alternative avian receptors and for human-like receptors, describing amino acid motifs at positions 190, 226 and 227 that play a major role in determining receptor specificity, and several other residues such as 159, 188, 193, 196, 198 and 225 that play a smaller role. Furthermore, we show changes at residues 135, 137, 147, 157, 158, 184, 188, and 192 can also modulate virus receptor avidity and that substitutions that increased or decreased the net positive charge around the haemagglutinin receptor-binding site show increases and decreases in avidity, respectively. The motifs we identify as increasing preference for the human-receptor will help guide future H9N2 surveillance efforts and facilitate our understanding of the emergence of influenza viruses with increased zoonotic potential.IMPORTANCE As of 2020, over 60 infections of humans by H9N2 influenza viruses have been recorded in countries where the virus is endemic. Avian-like cellular receptors are the primary target for these viruses. However, given that human infections have been detected on an almost monthly basis since 2015, there may be a capacity for H9N2 viruses to evolve and gain the ability to target human-like cellular receptors. Here we identify molecular signatures that can cause viruses to bind human-like receptors, and we identify the molecular basis for the distinctive preference for sulphated receptors displayed by the majority of recent H9N2 viruses. This work will help guide future surveillance by providing markers that signify the emergence of viruses with enhanced zoonotic potential as well as improving understanding of the basis of influenza virus receptor-binding.

4.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210299, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-35965467

RESUMEN

We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Humanos
5.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210300, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-35965468

RESUMEN

Modern epidemiological analyses to understand and combat the spread of disease depend critically on access to, and use of, data. Rapidly evolving data, such as data streams changing during a disease outbreak, are particularly challenging. Data management is further complicated by data being imprecisely identified when used. Public trust in policy decisions resulting from such analyses is easily damaged and is often low, with cynicism arising where claims of 'following the science' are made without accompanying evidence. Tracing the provenance of such decisions back through open software to primary data would clarify this evidence, enhancing the transparency of the decision-making process. Here, we demonstrate a Findable, Accessible, Interoperable and Reusable (FAIR) data pipeline. Although developed during the COVID-19 pandemic, it allows easy annotation of any data as they are consumed by analyses, or conversely traces the provenance of scientific outputs back through the analytical or modelling source code to primary data. Such a tool provides a mechanism for the public, and fellow scientists, to better assess scientific evidence by inspecting its provenance, while allowing scientists to support policymakers in openly justifying their decisions. We believe that such tools should be promoted for use across all areas of policy-facing research. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Asunto(s)
COVID-19 , Manejo de Datos , Humanos , Pandemias , Programas Informáticos , Flujo de Trabajo
6.
Proc Natl Acad Sci U S A ; 116(52): 27142-27150, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843887

RESUMEN

The human respiratory tract hosts a diverse community of cocirculating viruses that are responsible for acute respiratory infections. This shared niche provides the opportunity for virus-virus interactions which have the potential to affect individual infection risks and in turn influence dynamics of infection at population scales. However, quantitative evidence for interactions has lacked suitable data and appropriate analytical tools. Here, we expose and quantify interactions among respiratory viruses using bespoke analyses of infection time series at the population scale and coinfections at the individual host scale. We analyzed diagnostic data from 44,230 cases of respiratory illness that were tested for 11 taxonomically broad groups of respiratory viruses over 9 y. Key to our analyses was accounting for alternative drivers of correlated infection frequency, such as age and seasonal dependencies in infection risk, allowing us to obtain strong support for the existence of negative interactions between influenza and noninfluenza viruses and positive interactions among noninfluenza viruses. In mathematical simulations that mimic 2-pathogen dynamics, we show that transient immune-mediated interference can cause a relatively ubiquitous common cold-like virus to diminish during peak activity of a seasonal virus, supporting the potential role of innate immunity in driving the asynchronous circulation of influenza A and rhinovirus. These findings have important implications for understanding the linked epidemiological dynamics of viral respiratory infections, an important step towards improved accuracy of disease forecasting models and evaluation of disease control interventions.

7.
J Evol Biol ; 34(6): 893-909, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33185292

RESUMEN

During evolution, genomes are shaped by a plethora of forces that can leave characteristic signatures. A common goal when studying diverging populations is to detect the signatures of selective sweeps, which can be rather difficult in complex demographic scenarios, such as under secondary contact. Moreover, the detection of selective sweeps, especially in whole-genome data, often relies heavily on a narrow set of summary statistics that are affected by a multitude of factors, frequently leading to false positives and false negatives. Simulating genomic regions makes it possible to control these demographic and population genetic factors. We used simulations of large genomic regions to determine how different secondary contact and sympatric speciation scenarios affect the footprint of hard and soft selective sweeps in the presence of varying degrees of gene flow and recombination. We explored the ability of an array of population genetic summary statistics to detect the footprints of these selective sweeps under specific demographies. We focussed on metrics that do not require phased data or ancestral sequences and therefore have wide applicability. We found that a newly developed beta diversity measure, B¯GD utperformed all other metrics in detecting selective sweeps and that FST also performed well. High accuracy was also found in Δπ and genotype distance-derived metrics. The performance of most metrics strongly depended on factors such as the presence of an allopatric phase, migration rates, recombination, population growth, and whether the sweep was hard or soft. We provide suggestions for locating and analysing the response to selective sweeps in whole-genome data.


Asunto(s)
Especiación Genética , Genética de Población/métodos , Genómica/métodos , Modelos Genéticos , Selección Genética , Estadística como Asunto
8.
PLoS Comput Biol ; 15(12): e1007492, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31834896

RESUMEN

It is well recognised that animal and plant pathogens form complex ecological communities of interacting organisms within their hosts, and there is growing interest in the health implications of such pathogen interactions. Although community ecology approaches have been used to identify pathogen interactions at the within-host scale, methodologies enabling robust identification of interactions from population-scale data such as that available from health authorities are lacking. To address this gap, we developed a statistical framework that jointly identifies interactions between multiple viruses from contemporaneous non-stationary infection time series. Our conceptual approach is derived from a Bayesian multivariate disease mapping framework. Importantly, our approach captures within- and between-year dependencies in infection risk while controlling for confounding factors such as seasonality, demographics and infection frequencies, allowing genuine pathogen interactions to be distinguished from simple correlations. We validated our framework using a broad range of synthetic data. We then applied it to diagnostic data available for five respiratory viruses co-circulating in a major urban population between 2005 and 2013: adenovirus, human coronavirus, human metapneumovirus, influenza B virus and respiratory syncytial virus. We found positive and negative covariances indicative of epidemiological interactions among specific virus pairs. This statistical framework enables a community ecology perspective to be applied to infectious disease epidemiology with important utility for public health planning and preparedness.


Asunto(s)
Interacciones Huésped-Patógeno , Modelos Biológicos , Animales , Teorema de Bayes , Biología Computacional , Simulación por Computador , Interacciones Microbiota-Huesped , Humanos , Análisis Multivariante , Informática en Salud Pública , Infecciones del Sistema Respiratorio/epidemiología , Análisis Espacio-Temporal , Factores de Tiempo , Virosis/epidemiología
9.
Biol Conserv ; 236: 79-91, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31496538

RESUMEN

Knowledge gaps in spatiotemporal changes in mangrove diversity and composition have obstructed mangrove conservation programs across the tropics, but particularly in the Sundarbans (10,017 km2), the world's largest remaining natural mangrove ecosystem. Using mangrove tree data collected from Earth's largest permanent sample plot network at four historical time points (1986, 1994, 1999 and 2014), this study establishes spatially explicit baseline biodiversity information for the Sundarbans. We determined the spatial and temporal differences in alpha, beta, and gamma diversity in three ecological zones (hypo-, meso-, and hypersaline) and also uncovered changes in the mangroves' overall geographic range and abundances therein. Spatially, the hyposaline mangrove communities were the most diverse and heterogeneous in species composition while the hypersaline communities were the least diverse and most homogeneous at all historical time points. Since 1986, we detect an increasing trend of compositional homogeneity (between-site similarity in species composition) and a significant spatial contraction of distinct and diverse areas over the entire ecosystem. Temporally, the western and southern hypersaline communities have undergone radical shifts in species composition due to population increase and range expansion of the native invasive species Ceriops decandra and local extinction or range contraction of specialists including the globally endangered Heritiera fomes. The surviving biodiversity hotspots are distributed outside the legislated protected area network. In addition to suggesting the immediate coverage of these hotspots under protected area management, our novel biodiversity insights and spatial maps can form the basis for spatial conservation planning, biodiversity monitoring and protection initiatives for the Sundarbans.

10.
PLoS Pathog ; 12(4): e1005526, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27057693

RESUMEN

Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI) assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA) glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1) virus isolates (1997-2009) and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/inmunología , Filogenia , Sustitución de Aminoácidos , Animales , Variación Antigénica/genética , Variación Antigénica/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Humanos , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Ratones
12.
Proc Natl Acad Sci U S A ; 110(40): 16265-70, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043803

RESUMEN

Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle-human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human-animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.


Asunto(s)
Vacunas Bacterianas/uso terapéutico , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/prevención & control , Infecciones por Escherichia coli/veterinaria , Escherichia coli O157/patogenicidad , Vacunación Masiva/veterinaria , Zoonosis/prevención & control , Animales , Derrame de Bacterias/genética , Bovinos , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/transmisión , Heces/microbiología , Humanos , Modelos Inmunológicos , Reacción en Cadena de la Polimerasa/veterinaria , Salud Pública , Medición de Riesgo , Escocia , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Zoonosis/microbiología
13.
J Gen Virol ; 96(Pt 5): 1033-1041, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25614587

RESUMEN

Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum-virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1-VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa.


Asunto(s)
Proteínas de la Cápside/inmunología , Epítopos/inmunología , Virus de la Fiebre Aftosa/inmunología , África Oriental , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/genética , Línea Celular , Epítopos/genética , Virus de la Fiebre Aftosa/genética , Mutagénesis Sitio-Dirigida , Pruebas de Neutralización , Genética Inversa , Serogrupo
14.
Proc Biol Sci ; 280(1754): 20122823, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23303548

RESUMEN

Many malaria vector mosquitoes in Africa have an extreme preference for feeding on humans. This specialization allows them to sustain much higher levels of transmission than elsewhere, but there is little understanding of the evolutionary forces that drive this behaviour. In Tanzania, we used a semi-field system to test whether the well-documented preferences of the vectors, Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) for cattle and humans, respectively, are predicted by the fitness they obtain from host-seeking on these species relative to other available hosts. Mosquito fitness was contrasted, when humans were fully exposed and when they were protected by a typical bednet. The fitness of both vectors varied between host species. The predicted relationship between host preference and fitness was confirmed in An. arabiensis, but not in An. gambiae s.s., whose fitness was similar on humans and other mammals. Use of typical, imperfect bednets generated only minor reductions in An. gambiae s.s. feeding success and fitness on humans, but was predicted to generate a significant reduction in the lifetime reproductive success of An. arabiensis on humans relative to cows. This supports the hypothesis that such human-protective measures could additionally benefit malaria control by increasing selection for zoophily in vectors.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Malaria/transmisión , Control de Mosquitos/métodos , Plasmodium/crecimiento & desarrollo , Zoonosis/parasitología , Animales , Anopheles/crecimiento & desarrollo , Bovinos , Distribución de Chi-Cuadrado , Femenino , Humanos , Insectos Vectores/crecimiento & desarrollo , Malaria/parasitología , Malaria/prevención & control , Mosquiteros/parasitología , Modelos de Riesgos Proporcionales , Distribución Aleatoria , Tanzanía , Zoonosis/transmisión
15.
Sci Rep ; 13(1): 9666, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316521

RESUMEN

Livestock mobility exacerbates infectious disease risks across sub-Saharan Africa, but enables critical access to grazing and water resources, and trade. Identifying locations of high livestock traffic offers opportunities for targeted control. We focus on Tanzanian agropastoral and pastoral communities that account respectively for over 75% and 15% of livestock husbandry in eastern Africa. We construct networks of livestock connectivity based on participatory mapping data on herd movements reported by village livestock keepers as well as data from trading points to understand how seasonal availability of resources, land-use and trade influence the movements of livestock. In communities that practise agropastoralism, inter- and intra-village connectivity through communal livestock resources (e.g. pasture and water) was 1.9 times higher in the dry compared to the wet season suggesting greater livestock traffic and increased contact probability. In contrast, livestock from pastoral communities were 1.6 times more connected at communal locations during the wet season when they also tended to move farther (by 3 km compared to the dry season). Trade-linked movements were twice more likely from rural to urban locations. Urban locations were central to all networks, particularly those with potentially high onward movements, for example to abattoirs, livestock holding grounds, or other markets, including beyond national boundaries. We demonstrate how livestock movement information can be used to devise strategic interventions that target critical livestock aggregation points (i.e. locations of high centrality values) and times (i.e. prior to and after the wet season in pastoral and agropastoral areas, respectively). Such targeted interventions are a cost-effective approach to limit infection without restricting livestock mobility critical to sustainable livelihoods.


Asunto(s)
Mataderos , Ganado , Animales , África Oriental , Movimiento , Probabilidad
16.
Proc Biol Sci ; 279(1733): 1630-9, 2012 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-22090389

RESUMEN

We examined long-term surveillance data on antimicrobial resistance (AMR) in Salmonella Typhimurium DT104 (DT104) isolates from concurrently sampled and sympatric human and animal populations in Scotland. Using novel ecological and epidemiological approaches to examine diversity, and phenotypic and temporal relatedness of the resistance profiles, we assessed the more probable source of resistance of these two populations. The ecological diversity of AMR phenotypes was significantly greater in human isolates than in animal isolates, at the resolution of both sample and population. Of 5200 isolates, there were 65 resistance phenotypes, 13 unique to animals, 30 unique to humans and 22 were common to both. Of these 22, 11 were identified first in the human isolates, whereas only five were identified first in the animal isolates. We conclude that, while ecologically connected, animals and humans have distinguishable DT104 communities, differing in prevalence, linkage and diversity. Furthermore, we infer that the sympatric animal population is unlikely to be the major source of resistance diversity for humans. This suggests that current policy emphasis on restricting antimicrobial use in domestic animals may be overly simplistic. While these conclusions pertain to DT104 in Scotland, this approach could be applied to AMR in other bacteria-host ecosystems.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana , Salmonella typhimurium/efectos de los fármacos , Animales , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Salmonella typhimurium/aislamiento & purificación , Escocia/epidemiología
17.
Malar J ; 11: 425, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23253167

RESUMEN

BACKGROUND: Host responses are important sources of selection upon the host species range of ectoparasites and phytophagous insects. However little is known about the role of host responses in defining the host species range of malaria vectors. This study aimed to estimate the relative importance of host behaviour to the feeding success and fitness of African malaria vectors, and assess its ability to predict their known host species preferences in nature. METHODS: Paired evaluations of the feeding success and fitness of African vectors Anopheles arabiensis and Anopheles gambiae sensu stricto in the presence and limitation of host behaviour were conducted in a semi-field system (SFS) at Ifakara Health Institute, Tanzania. In one set of trials, mosquitoes were released within the SFS and allowed to forage overnight on a host that was free to exhibit a natural behaviour in response to insect biting. In the other, mosquitoes were allowed to feed directly on from the skin surface of immobile hosts. The feeding success and subsequent fitness of vectors under these conditions were investigated on six host types (humans, calves, chickens, cows, dogs and goats) to assess whether physical movements of preferred host species (cattle for An. arabiensis, humans for An. gambiae s.s.) were less effective at preventing mosquito bites than those of common alternatives. RESULTS: Anopheles arabiensis generally had greater feeding success when applied directly to host skin than when foraging on unrestricted hosts (in five of six host species). However, An. gambiae s.s. obtained blood meals from free and restrained hosts with similar success from most host types (four out of six). Overall, the blood meal size, oviposition rate, fecundity and post-feeding survival of mosquito vectors were significantly higher after feeding on hosts free to exhibit behaviour, than those who were immobilized during feeding trials. CONCLUSIONS: Allowing hosts to move freely during exposure to mosquitoes was associated with moderate reductions in mosquito feeding success, but no detrimental impact to the subsequent fitness of mosquitoes that were able to feed upon them. This suggests that physical defensive behaviours exhibited by common host species including humans do not impose substantial fitness costs on African malaria vectors.


Asunto(s)
Anopheles/fisiología , Anopheles/parasitología , Interacciones Huésped-Parásitos/fisiología , Insectos Vectores/fisiología , Insectos Vectores/parasitología , Malaria/transmisión , África , Animales , Conducta Animal/fisiología , Bovinos , Pollos , Perros , Conducta Alimentaria/fisiología , Femenino , Fertilidad , Cabras , Humanos , Masculino
18.
SSM Popul Health ; 19: 101192, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36039349

RESUMEN

Previous research has demonstrated increasing diversity in causes of mortality among high-income nations in recent decades, associated with improvements in health and increasing life expectancies. Health outcomes are known to vary widely between communities within these countries and inequalities between sexes and other subpopulations are key in understanding the health of populations. Despite this, little is known about variation in the diversity of mortality causes between these subpopulations. Diversification in mortality causes indicates an increase in the pool of potential causes of mortality an individual is likely to face. This poses challenges for the public health and medical sectors by increasing diagnostic uncertainty and broadening the range of causes to be addressed by public health and medical interventions. Here we examine trends over time in the diversity in causes of mortality in Scotland by sex and area-level deprivation, also examining deaths among those younger than 75 years and those 75 years and older separately. We find that diversity in causes of mortality has increased across subpopulations; that it has risen more quickly in men than women; that the rate of increase has been similar across age categories; and that there is no clear ranking in the trends by deprivation quintile, despite slower improvements in mortality rates among the most deprived. Increasing diversity in mortality causes suggests that a greater public health focus on reducing death rates from a broader range of causes is likely to be required, and this may be especially important for men who face a faster rate of diversification.

19.
Epidemics ; 40: 100612, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930904

RESUMEN

The use of data has been essential throughout the unfolding COVID-19 pandemic. We have needed it to populate our models, inform our understanding, and shape our responses to the disease. However, data has not always been easy to find and access, it has varied in quality and coverage, been difficult to reuse or repurpose. This paper reviews these and other challenges and recommends steps to develop a data ecosystem better able to deal with future pandemics by better supporting preparedness, prevention, detection and response.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Ecosistema , Predicción , Humanos , Pandemias/prevención & control
20.
Epidemics ; 39: 100574, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35617882

RESUMEN

Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.


Asunto(s)
COVID-19 , Epidemias , COVID-19/epidemiología , Calibración , Humanos , SARS-CoV-2 , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA