Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614061

RESUMEN

Recently, we have demonstrated that miR-423-5p modulates the growth and metastases of prostate cancer (PCa) cells both in vitro and in vivo. Here, we have studied the effects of miR-423-5p on the proteomic profile in order to identify its intracellular targets and the affected pathways. Applying a quantitative proteomic approach, we analyzed the effects on the protein expression profile of miR-423-5p-transduced PCa cells. Moreover, a computational analysis of predicted targets of miR-423-5p was carried out by using several target prediction tools. Proteomic analysis showed that 63 proteins were differentially expressed in miR-423-5-p-transfected LNCaP cells if compared to controls. Pathway enrichment analysis revealed that stable overexpression of miR-423-5p in LNCaP PCa cells induced inhibition of glycolysis and the metabolism of several amino acids and a parallel downregulation of proteins involved in transcription and hypoxia, the immune response through Th17-derived cytokines, inflammation via amphorin signaling, and ion transport. Moreover, upregulated proteins were related to the S phase of cell cycle, chromatin modifications, apoptosis, blood coagulation, and calcium transport. We identified seven proteins commonly represented in miR-423-5p targets and differentially expressed proteins (DEPs) and analyzed their expression and influence on the survival of PCa patients from publicly accessible datasets. Overall, our findings suggest that miR-423-5p induces alterations in glucose and amino acid metabolism in PCa cells paralleled by modulation of several tumor-associated processes.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , MicroARNs/metabolismo , Proteómica , Neoplasias de la Próstata/metabolismo , Próstata/patología , Aminoácidos/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
2.
Nat Cell Biol ; 9(5): 531-40, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17435750

RESUMEN

FoxG1 is an evolutionarily conserved, winged-helix transcriptional repressor that maintains progenitor cells in the vertebrate forebrain. How the activity of FoxG1 is regulated is not known. Here, we report that in the developing Xenopus and mouse forebrain, FoxG1 is nuclear in progenitor cells but cytoplasmic in differentiating cells. The subcellular localisation of FoxG1 is regulated at the post-translational level by casein kinase I (CKI) and fibroblast growth factor (FGF) signalling. CKI phosphorylation of Ser 19 of FoxG1 promotes nuclear import, whereas FGF-induced phosphorylation of Thr 226 promotes nuclear export. Interestingly, FGF-induced phosphorylation of FoxG1 is mediated Akt kinase (also known as protein B kinase, PKB) kinase, rather than the MAPK pathway. Phosphorylation of endogenous FoxG1 is blocked by CKI and Akt inhibitors. In the mouse olfactory placode cell line OP27, and in cortical progenitors, increased FGF signalling causes FoxG1 to exit the nucleus and promotes neuronal differentiation, whereas FGF and Akt inhibitors block this effect. Thus, CKI and FGF signalling converge on an antagonistic regulation of FoxG1, which in turn controls neurogenesis in the forebrain.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Células Madre Embrionarias/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Factores de Transcripción Forkhead/genética , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Fosforilación , Prosencéfalo/citología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/embriología , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina , Transducción de Señal , Treonina , Transfección , Proteínas de Xenopus/genética , Xenopus laevis/embriología
3.
Cell Mol Life Sci ; 70(21): 4055-65, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23532409

RESUMEN

Melanoma is a malignant tumor of melanocytes that can spread to other organs of the body, resulting in severe and/or lethal malignancies. Melanocytes are pigment-producing cells found in the deep layer of the epidermis and are originated from melanocytes stem cells through a cellular process called melanogenesis. Several genes and epigenetic and micro-environmental factors are involved in this process via the regulation and maintenance of the balance between melanocytes stem cells proliferation and their differentiation into melanocytes. Dysregulation of this balance through gain or loss of function of key genes implicated in the control and regulation of cell cycle progression and/or differentiation results in melanoma initiation and progression. This review aims to provide a comprehensive overview about the origin of melanocytes, the oncogenic events involved in melanocytes stem cells transformation, and the mechanisms implicated in the perpetuation of melanoma malignant phenotype.


Asunto(s)
Transformación Celular Neoplásica , Melanoma/fisiopatología , Neoplasias Cutáneas/fisiopatología , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Progresión de la Enfermedad , Humanos , Melanocitos/citología , Melanoma/genética , Ratones , MicroARNs/metabolismo , Mutación , Fenotipo , Transducción de Señal , Neoplasias Cutáneas/genética , Células Madre/citología
4.
J Biol Chem ; 287(17): 13633-43, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22393060

RESUMEN

Malignant melanoma-initiating cells (MMIC) are a subpopulation of cells responsible for melanoma tumor growth and progression. They are defined by the expression of the ATP-binding cassette (ABC) subfamily B member 5 (ABCB5). Here, we identified a critical role for the DEAD-box helicase antigen (HAGE) in ABCB5+ MMIC-dependent tumorigenesis and show that HAGE-specific inactivation inhibits melanoma tumor growth mediated by this tumor-initiating population. Knockdown of HAGE led to a significant decrease in RAS protein expression with a concomitant decrease in activation of the AKT and ERK signaling pathways implicated to play an important role in melanoma progression. To confirm that the reduction in NRAS (Neuroblastoma RAS) expression was dependent on the HAGE helicase activity, we showed that NRAS, effectively silenced by siRNA, could be rescued by reintroduction of HAGE in cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes NRAS unwinding in vitro. We also observed using tumor transplantation in Non-obese diabetic/severe combined immunodeficiency mice that the HAGE knockdown in a ABCB5+ melanoma cell line displayed a significant decrease in tumor growth and compared with the control. Our results suggest that the helicase HAGE is required for ABCB5+ MMIC-dependent tumor growth through promoting RAS protein expression and that cancer therapies targeting HAGE helicase may have broad applications for treating malignant melanoma and potentially other cancer types.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/biosíntesis , Antígenos de Neoplasias/biosíntesis , ARN Helicasas DEAD-box/biosíntesis , Regulación Neoplásica de la Expresión Génica , Melanoma/inmunología , Melanoma/metabolismo , Proteínas de Neoplasias/biosíntesis , Subfamilia B de Transportador de Casetes de Unión a ATP , Animales , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Silenciador del Gen , Humanos , Inmunohistoquímica/métodos , Ratones , Trasplante de Neoplasias , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transfección
5.
J Exp Clin Cancer Res ; 41(1): 20, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35016717

RESUMEN

BACKGROUND: The long non-coding RNA (lncRNA), MALAT1, plays a key role in the development of different cancers, and its expression is associated with worse prognosis in patients. However, its mechanism of action and its regulation are not well known in prostate cancer (PCa). A general mechanism of action of lncRNAs is their interaction with other epigenetic regulators including microRNAs (miRNAs). METHODS: Using lentiviral stable miRNA transfection together with cell biology functional assays and gene expression/target analysis, we investigated the interaction between MALAT1 and miR-423-5p, defined as a target with in silico prediction analysis, in PCa. RESULTS: Through bioinformatic analysis of data available from TCGA, we have found that MALAT1 expression correlates with high Gleason grade, metastasis occurrence, and reduced survival in PCa patients. These findings were validated on a TMA of PCa showing a significant correlation between MALAT1 expression with both stage and grading. We report that, in PCa cells, MALAT1 expression and activity is regulated by miR-423-5p that binds MALAT1, downregulates its expression and inhibits its activity in promoting proliferation, migration, and invasion. Using NanoString analysis, we unraveled downstream cell pathways that were affected by miR-423-5p expression and MALAT1 downregulation and identified several alterations in genes that are involved in metastatic response and angiogenic pathways. In addition, we showed that the overexpression of miR-423-5p increases survival and decreases metastases formation in a xenograft mouse model. CONCLUSIONS: We provide evidence on the role of MALAT1 in PCa tumorigenesis and progression. Also, we identify a direct interaction between miR-423-5p and MALAT1, which results in the suppression of MALAT1 action in PCa.


Asunto(s)
MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Animales , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Transfección
6.
J Virol ; 84(22): 11634-45, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20826694

RESUMEN

The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense.


Asunto(s)
Infecciones por Cardiovirus/metabolismo , Virus de la Encefalomiocarditis/fisiología , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células CHO , Infecciones por Cardiovirus/virología , Línea Celular , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , Transporte de Proteínas , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
7.
Transl Oncol ; 14(8): 101134, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34051619

RESUMEN

In recent years, it has been evidenced that the human transcriptome includes several types of non-coding RNAs (ncRNAs) that are mainly involved in the regulation of different cellular processes. Among ncRNAs, long-non-coding RNAs (lncRNAs) are defined as longer than 200 nucleotides and have been shown to be involved in several physiological and pathological events, including immune system regulation and cancer. Cancer stem cells (CSCs) are defined as a population of cancer cells that possess characteristics, such as resistance to standard treatments, cancer initiation, ability to undergo epithelial-to-mesenchymal transition, and the ability to invade, spread, and generate metastases. The cancer microenvironment, together with genetic and epigenetic factors, is fundamental for CSC maintenance and tumor growth and progression. Unsurprisingly, lncRNAs have been involved in both CSC biology and cancer progression, prognosis and recurrence. Here we review the most recent literature on IncRNAs involvement in CSC biology and function.

8.
Cell Death Dis ; 11(3): 205, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32205842

RESUMEN

The financial support for this Article was not fully acknowledged. The Acknowledgements should have included the following: "This study was supported by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no 641549, Immutrain." The PDF and HTML versions of the paper have been modified accordingly.

9.
Cell Death Dis ; 11(10): 850, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051434

RESUMEN

The ß2-Adrenergic receptor (ß2-AR) is a G protein-coupled receptor (GPCR), involved in the development of many cancers, among which HNSCC. In this contest, ß2-AR signaling interacts with different pathways, such as PI3K and MAPK, commonly activated by TK receptors. For this reason, TK blockade is one of the most adopted therapeutic strategies in HNSCC patients. In our study we investigated the effects of the ß2-AR blocking in HNSCC cell lines, using the selective inhibitor ICI118,551 (ICI), in combination with the MAPK inhibitor U0126. We found that ICI leads to the blocking of p38 and NF-kB oncogenic pathways, strongly affecting also the ERK and PI3K pathways. Cotreatment with U0126 displays a synergic effect on cell viability and pathway alteration. Interestingly, we found that the ß2-AR blockade affects Nrf2-Keap1 stability and its nuclear translocation leading to a drastic ROS increase and oxidative stress. Our results are confirmed by a TCGA dataset analysis, showing that NFE2L2 gene is commonly overexpressed in HNSC, and correlated with a lower survival rate. In our system, the PI3K pathway inhibition culminated in the blocking of pro-survival autophagy, a mechanism normally adopted by cancer cells to became less responsive to the therapies. The mTOR expression, commonly upregulated in HNSC, was reduced in patients with disease-recurrence. It is well known that mTOR has a strong autophagy inhibition effect, therefore its downregulation promoted pro-survival autophagy, with a related increase recurrence rate. Our findings highlight for the first time the key role of ß2-AR and related pathway in HNSCC cell proliferation and drug resistance, proposing it as a valuable therapeutic molecular target.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Antagonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Propanolaminas/administración & dosificación , Propanolaminas/farmacología , Inhibidores de Proteínas Quinasas/administración & dosificación , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
10.
Cells ; 8(8)2019 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-31426611

RESUMEN

Chemoresistance is a major problem in cancer therapy as cancer cells develop mechanisms that counteract the effect of chemotherapeutic compounds, leading to relapse and the development of more aggressive cancers that contribute to poor prognosis and survival rates of treated patients. Cancer stem cells (CSCs) play a key role in this event. Apart from their slow proliferative property, CSCs have developed a range of cellular processes that involve drug efflux, drug enzymatic inactivation and other mechanisms. In addition, the microenvironment where CSCs evolve (CSC niche), effectively contributes to their role in cancer initiation, progression and chemoresistance. In the CSC niche, immune cells, mesenchymal stem cells (MSCs), endothelial cells and cancer associated fibroblasts (CAFs) contribute to the maintenance of CSC malignancy via the secretion of factors that promote cancer progression and resistance to chemotherapy. Due to these factors that hinder successful cancer therapies, CSCs are a subject of intense research that aims at better understanding of CSC behaviour and at developing efficient targeting therapies. In this review, we provide an overview of cancer stem cells, their role in cancer initiation, progression and chemoresistance, and discuss the progress that has been made in the development of CSC targeted therapies.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas , Microambiente Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
11.
J Exp Clin Cancer Res ; 38(1): 160, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-30987650

RESUMEN

BACKGROUND: Glucose-6-phospate dehydrogenase (G6PD) is the limiting enzyme of the pentose phosphate pathway (PPP) correlated to cancer progression and drug resistance. We previously showed that G6PD inhibition leads to Endoplasmic Reticulum (ER) stress often associated to autophagy deregulation. The latter can be induced by target-based agents such as Lapatinib, an anti-HER2 tyrosine kinase inhibitor (TKI) largely used in breast cancer treatment. METHODS: Here we investigate whether G6PD inhibition causes autophagy alteration, which can potentiate Lapatinib effect on cancer cells. Immunofluorescence and flow cytometry for LC3B and lysosomes tracker were used to study autophagy in cells treated with lapatinib and/or G6PD inhibitors (polydatin). Immunoblots for LC3B and p62 were performed to confirm autophagy flux analyses together with puncta and colocalization studies. We generated a cell line overexpressing G6PD and performed synergism studies on cell growth inhibition induced by Lapatinib and Polydatin using the median effect by Chou-Talay. Synergism studies were additionally validated with apoptosis analysis by annexin V/PI staining in the presence or absence of autophagy blockers. RESULTS: We found that the inhibition of G6PD induced endoplasmic reticulum stress, which was responsible for the deregulation of autophagy flux. Indeed, G6PD blockade caused a consistent increase of autophagosomes formation independently from mTOR status. Cells engineered to overexpress G6PD became resilient to autophagy and resistant to lapatinib. On the other hand, G6PD inhibition synergistically increased lapatinib-induced cytotoxic effect on cancer cells, while autophagy blockade abolished this effect. Finally, in silico studies showed a significant correlation between G6PD expression and tumour relapse/resistance in patients. CONCLUSIONS: These results point out that autophagy and PPP are crucial players in TKI resistance, and highlight a peculiar vulnerability of breast cancer cells, where impairment of metabolic pathways and autophagy could be used to reinforce TKI efficacy in cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis/efectos de los fármacos , Autofagia/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Femenino , Expresión Génica , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Lapatinib/farmacología , Pronóstico , Recurrencia
12.
J Exp Clin Cancer Res ; 38(1): 210, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118051

RESUMEN

BACKGROUND: Metformin, a biguanide, is one of the most commonly prescribed treatments for type 2 diabetes and has recently been recommended as a potential drug candidate for advanced cancer therapy. Although Metformin has antiproliferative and proapoptotic effects on breast cancer, the heterogenous nature of this disease affects the response to metformin leading to the activation of pro-invasive signalling pathways that are mediated by the focal adhesion kinase PYK2 in pure HER2 phenotype breast cancer. METHODS: The effect of metformin on different breast cancer cell lines, representing the molecular heterogenicity of the disease was investigated using in vitro proliferation and apoptosis assays. The activation of PYK2 by metformin in pure HER2 phenotype (HER2+/ER-/PR-) cell lines was investigated by microarrays, quantitative real time PCR and immunoblotting. Cell migration and invasion PYK2-mediated and in response to metformin were determined by wound healing and invasion assays using HER2+/ER-/PR- PYK2 knockdown cell lines. Proteomic analyses were used to determine the role of PYK2 in HER2+/ER-/PR- proliferative, migratory and invasive cellular pathways and in response to metformin. The association between PYK2 expression and HER2+/ER-/PR- patients' cancer-specific survival was investigated using bioinformatic analysis of PYK2 expression from patient gene expression profiles generated by the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study. The effect of PYK2 and metformin on tumour initiation and invasion of HER2+/ER-/PR- breast cancer stem-like cells was performed using the in vitro stem cell proliferation and invasion assays. RESULTS: Our study showed for the first time that pure HER2 breast cancer cells are more resistant to metformin treatment when compared with the other breast cancer phenotypes. This drug resistance was associated with the activation of PTK2B/PYK2, a well-known mediator of signalling pathways involved in cell proliferation, migration and invasion. The role of PYK2 in promoting invasion of metformin resistant HER2 breast cancer cells was confirmed through investigating the effect of PYK2 knockdown and metformin on cell invasion and by proteomic analysis of associated cellular pathways. We also reveal a correlation between high level of expression of PYK2 and reduced survival in pure HER2 breast cancer patients. Moreover, we also report a role of PYK2 in tumour initiation and invasion-mediated by pure HER2 breast cancer stem-like cells. This was further confirmed by demonstrating a correlation between reduced survival in pure HER2 breast cancer patients and expression of PYK2 and the stem cell marker CD44. CONCLUSIONS: We provide evidence of a PYK2-driven pro-invasive potential of metformin in pure HER2 cancer therapy and propose that metformin-based therapy should consider the molecular heterogeneity of breast cancer to prevent complications associated with cancer chemoresistance, invasion and recurrence in treated patients.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Quinasa 2 de Adhesión Focal/genética , Metformina/farmacología , Receptor ErbB-2/genética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Metformina/efectos adversos , Invasividad Neoplásica/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Proteómica , Transducción de Señal
13.
Methods Mol Biol ; 1692: 129-138, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28986893

RESUMEN

Epithelial Mesenchymal Transition (EMT) is a key event in cancer progression. During this event, epithelial cancer cells undergo molecular and cellular changes leading to their trans-differentiation into mesenchymal cancer cells that are capable of migration, invasion, and metastasis to other tissues and organs. Here, we present a method for in vitro induction of EMT in prostate cancer cell lines using lentiviral expression of a PMLI isoform mutant construct.


Asunto(s)
Citoplasma/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Neoplasias de la Próstata/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Masculino , Mutación/genética , Neoplasias de la Próstata/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Vimentina/metabolismo
14.
Methods Mol Biol ; 1692: 139-148, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28986894

RESUMEN

Cancer stem Cells or Cancer Stem-like Cells are thought to be associated with chemoresistance and recurrence in cancer patients following chemotherapy. Developing a method to study these malignant populations is the key to successful development of drug or immunotherapeutic assays. Here, we present a method of identification, isolation of Prostate Cancer Stem Cells (PCSCs) from the DU145 prostate cancer cell line using the NANOG-GFP expression system.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Lentivirus/genética , Masculino , Proteína Homeótica Nanog/genética
15.
J Exp Clin Cancer Res ; 37(1): 296, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509303

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) play a key role in cancer initiation, progression and chemoresistance. Epigenetic alterations have been identified as prominent factors that contribute to the CSCs phenotype. Here, we investigated the effects of the HDAC inhibitor valproic acid (VPA) and the demethylating agent, 5'azacytidine (DAC) on the stem phenotype of MG63 and Saos2 osteosarcoma cell lines. METHODS: Saos2 and MG63 cells were treated with DAC and VPA, alone and in combination. Untreated and treated cells were examined for stemness phenotype by cytometry and real-time PCR. Sarcospheres and colonies formation were also evaluated. Moreover, histone modification and methylation were tested by flow cytomery and western blotting. HDAC2 depleted cells were examined for stemness phenotype and their ability to generate tumors in NOD/SCID IL2R-gamma-0 (NSG) mice. HDAC2 expression on human osteosarcoma tissues was evaluated. RESULTS: We found that DAC and VPA induce an increased expression of stem markers including CD133, OCT4, SOX2 and NANOG, and an increased ability in sarcospheres and colonies formation efficiency. Interestingly, we showed that DAC and VPA treatment decreased repressive histone markers, while increased the active ones. These histone modifications were also associated with an increase of acetylation of histones H3, a decrease of DNA global methylation, HDAC2 and DNMT3a. Furthermore, HDAC2 silenced-MG63 and Saos2 cells acquired a stem phenotype, and promoted in vivo tumorigenesis. In human osteosarcoma tissues, HDAC2 was strongly expressed in nucleus. CONCLUSIONS: Collectively, our results suggest that VPA and DAC induce an expansion of osteosarcoma CSCs, and we report for the first time that HDAC2 is a key factor regulating both CSCs phenotype and in vivo cancer growth. In conclusion, we have identified HDAC2 as a potential therapeutic target in human osteosarcoma treatment.


Asunto(s)
Neoplasias Óseas/enzimología , Histona Desacetilasa 2/deficiencia , Células Madre Neoplásicas/enzimología , Osteosarcoma/enzimología , Animales , Azacitidina/farmacología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Metilación de ADN , Xenoinjertos , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasa 2/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Osteosarcoma/genética , Osteosarcoma/patología , Transfección , Ácido Valproico/farmacología
16.
Oncotarget ; 9(6): 7054-7065, 2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29467949

RESUMEN

Treatment of gestational trophoblastic diseases (GTD) involves surgery, radiotherapy and chemotherapy. Although, these therapeutic approaches are highly successful, drug resistance and toxicity remain a concern for high risk patients. This Chemoresistance has also been observed in the presence of cancer stem cells that are thought to be responsible for cases of cancer recurrence. In this study, we report the presence of previously unknown populations of trophoblastic stem-like cells (SLCs) that are resistant to the chemotherapeutic drug doxorubicin. We demonstrate that these populations express the stem cell markers NANOG and Sox2 and higher levels of OCT-4 (NANOG+/OCT-4high/SOX2+). Although chemoresistant, we show that the invasive capacity of these trophoblastic SLCs is significantly inhibited by doxorubicin treatment. To better characterise these populations, we also identified cellular pathways that are involved in SLCs-chemoresistance to doxorubicin. In summary, we provide evidence of the presence of NANOG+/OCT-4+/SOX2+ trophoblastic SLCs that are capable to contribute to the susceptibility to GTD and that may be involved in Chemoresistance associated with drug resistance and recurrence in high risk GTDs' patients. We propose that targeting these populations could be therapeutically exploited for clinical benefit.

17.
Cell Death Dis ; 9(3): 344, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497041

RESUMEN

Cell-cell adhesions constitute the structural "glue" that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell-cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell-cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER-/PR- breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell-cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER-/PR- breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Proteínas Portadoras/genética , Movimiento Celular , Femenino , Humanos , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/genética , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas de Transporte Vesicular
18.
Cell Death Dis ; 9(5): 572, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29760380

RESUMEN

Pentose phosphate pathway (PPP) is a major glucose metabolism pathway, which has a fundamental role in cancer growth and metastasis. Even though PPP blockade has been pointed out as a very promising strategy against cancer, effective anti-PPP agents are not still available in the clinical setting. Here we demonstrate that the natural molecule polydatin inhibits glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP. Polydatin blocks G6PD causing accumulation of reactive oxygen species and strong increase of endoplasmic reticulum stress. These effects are followed by cell cycle block in S phase, an about 50% of apoptosis, and 60% inhibition of invasion in vitro. Accordingly, in an orthotopic metastatic model of tongue cancer, 100 mg/kg polydatin induced an about 30% tumor size reduction with an about 80% inhibition of lymph node metastases and 50% reduction of lymph node size (p < 0.005). Polydatin is not toxic in animals up to a dose of 200 mg/kg and a phase II clinical trial shows that it is also well tolerated in humans (40 mg twice a day for 90 days). Thus, polydatin may be used as a reliable tool to limit human cancer growth and metastatic spread.


Asunto(s)
Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucósidos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/enzimología , Vía de Pentosa Fosfato/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Estilbenos/farmacología , Animales , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Células MCF-7 , Masculino , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Puntos de Control de la Fase S del Ciclo Celular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Artículo en Inglés | MEDLINE | ID: mdl-29263927

RESUMEN

Glioblastoma multiforme (GBM) is a debilitating disease that is associated with poor prognosis, short median patient survival and a very limited response to therapies. GBM has a very complex pathogenesis that involves mutations and alterations of several key cellular pathways that are involved in cell proliferation, survival, migration and angiogenesis. Therefore, efforts that are directed toward better understanding of GBM pathogenesis are essential to the development of efficient therapies that provide hope and extent patient survival. In this review, we outline the alterations commonly associated with GBM pathogenesis and summarize therapeutic strategies that are aimed at targeting aberrant cellular pathways in GBM.

20.
Stem Cells Transl Med ; 6(12): 2115-2125, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29072369

RESUMEN

Tumors are composed of different types of cancer cells that contribute to tumor heterogeneity. Among these populations of cells, cancer stem cells (CSCs) play an important role in cancer initiation and progression. Like their stem cells counterpart, CSCs are also characterized by self-renewal and the capacity to differentiate. A particular population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into cells of mesodermal characteristics. Several studies have reported the potential pro-or anti-tumorigenic influence of MSCs on tumor initiation and progression. In fact, MSCs are recruited to the site of wound healing to repair damaged tissues, an event that is also associated with tumorigenesis. In other cases, resident or migrating MSCs can favor tumor angiogenesis and increase tumor aggressiveness. This interplay between MSCs and cancer cells is fundamental for cancerogenesis, progression, and metastasis. Therefore, an interesting topic is the relationship between cancer cells, CSCs, and MSCs, since contrasting reports about their respective influences have been reported. In this review, we discuss recent findings related to conflicting results on the influence of normal and CSCs in cancer development. The understanding of the role of MSCs in cancer is also important in cancer management. Stem Cells Translational Medicine 2017;6:2115-2125.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Neoplasias/etiología , Células Madre Neoplásicas/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Humanos , Células Madre Mesenquimatosas/patología , Neoplasias/terapia , Células Madre Neoplásicas/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA