Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 565(7741): 581-586, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30700868

RESUMEN

Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.

2.
Opt Lett ; 49(7): 1737-1740, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560850

RESUMEN

Inference of joule-class THz radiation sources from microchannel targets driven with hundreds of joule, picosecond lasers is reported. THz sources of this magnitude are useful for nonlinear pumping of matter and for charged-particle acceleration and manipulation. Microchannel targets demonstrate increased laser-THz conversion efficiency compared to planar foil targets, with laser energy to THz energy conversion up to ∼0.9% in the best cases.

3.
Phys Rev Lett ; 131(10): 105101, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739360

RESUMEN

In direct-drive inertial confinement fusion, the laser bandwidth reduces the laser imprinting seed of hydrodynamic instabilities. The impact of varying bandwidth on the performance of direct-drive DT-layered implosions was studied in targets with different hydrodynamic stability properties. The stability was controlled by changing the shell adiabat from (α_{F}≃5) (more stable) to (α_{F}≃3.5) (less stable). These experiments show that the performance of lower adiabat implosions improves considerably as the bandwidth is raised indicating that further bandwidth increases, beyond the current capabilities of OMEGA, would be greatly beneficial. These results suggest that the future generation of ultra-broadband lasers could enable achieving high convergence and possibly high gains in direct drive ICF.

4.
Phys Rev Lett ; 128(19): 195002, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35622051

RESUMEN

This Letter presents the first observation on how a strong, 500 kG, externally applied B field increases the mode-two asymmetry in shock-heated inertial fusion implosions. Using a direct-drive implosion with polar illumination and imposed field, we observed that magnetization produces a significant increase in the implosion oblateness (a 2.5× larger P2 amplitude in x-ray self-emission images) compared with reference experiments with identical drive but with no field applied. The implosions produce strongly magnetized electrons (ω_{e}τ_{e}≫1) and ions (ω_{i}τ_{i}>1) that, as shown using simulations, restrict the cross field heat flow necessary for lateral distribution of the laser and shock heating from the implosion pole to the waist, causing the enhanced mode-two shape.

5.
Phys Rev Lett ; 127(5): 055001, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397224

RESUMEN

Hot electrons generated by laser-plasma instabilities degrade the performance of laser-fusion implosions by preheating the DT fuel and reducing core compression. The hot-electron energy deposition in the DT fuel has been directly measured for the first time by comparing the hard x-ray signals between DT-layered and mass-equivalent ablator-only implosions. The electron energy deposition profile in the fuel is inferred through dedicated experiments using Cu-doped payloads of varying thickness. The measured preheat energy accurately explains the areal-density degradation observed in many OMEGA implosions. This technique can be used to assess the viability of the direct-drive approach to laser fusion with respect to the scaling of hot-electron preheat with laser energy.

6.
Phys Rev Lett ; 127(10): 105001, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533333

RESUMEN

Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)10.1038/s41586-019-0877-0]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the ℓ=1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and ℓ=1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2×10^{14} fusion reactions.

7.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280561

RESUMEN

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

8.
Phys Rev Lett ; 125(6): 065001, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32845678

RESUMEN

A new class of ignition designs is proposed for inertial confinement fusion experiments. These designs are based on the hot-spot ignition approach, but instead of a conventional target that is comprised of a spherical shell with a thin frozen deuterium-tritium (DT) layer, a liquid DT sphere inside a wetted-foam shell is used, and the lower-density central region and higher-density shell are created dynamically by appropriately shaping the laser pulse. These offer several advantages, including simplicity in target production (suitable for mass production for inertial fusion energy), absence of the fill tube (leading to a more-symmetric implosion), and lower sensitivity to both laser imprint and physics uncertainty in shock interaction with the ice-vapor interface. The design evolution starts by launching an ∼1-Mbar shock into a DT sphere. After bouncing from the center, the reflected shock reaches the outer surface of the sphere and the shocked material starts to expand outward. Supporting ablation pressure ultimately stops such expansion and subsequently launches a shock toward the target center, compressing the ablator and fuel, and forming a shell. The shell is then accelerated and fuel is compressed by appropriately shaping the drive laser pulse, forming a hot spot using the conventional or shock ignition approaches. This Letter demonstrates the feasibility of the new concept using hydrodynamic simulations and discusses the advantages and disadvantages of the concept compared with more-traditional inertial confinement fusion designs.

9.
Phys Rev Lett ; 123(6): 065001, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491185

RESUMEN

Using highly resolved 3D radiation-hydrodynamic simulations, we identify a novel mechanism by which the deleterious impact of laser imprinting is mitigated in direct-drive inertial confinement fusion. Unsupported shocks and associated rarefaction flows, commonly produced with short laser bursts, are found to reduce imprint modulations prior to target acceleration. Optimization through the choice of laser pulse with picket(s) and target dimensions may improve the stability of lower-adiabat designs, thus providing the necessary margin for ignition-relevant implosions.

10.
Phys Rev Lett ; 122(1): 015002, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012651

RESUMEN

We report on the first accurate validation of low-Z ion-stopping formalisms in the regime ranging from low-velocity ion stopping-through the Bragg peak-to high-velocity ion stopping in well-characterized high-energy-density plasmas. These measurements were executed at electron temperatures and number densities in the range of 1.4-2.8 keV and 4×10^{23}-8×10^{23} cm^{-3}, respectively. For these conditions, it is experimentally demonstrated that the Brown-Preston-Singleton formalism provides a better description of the ion stopping than other formalisms around the Bragg peak, except for the ion stopping at v_{i}∼0.3v_{th}, where the Brown-Preston-Singleton formalism significantly underpredicts the observation. It is postulated that the inclusion of nuclear-elastic scattering, and possibly coupled modes of the plasma ions, in the modeling of the ion-ion interaction may explain the discrepancy of ∼20% at this velocity, which would have an impact on our understanding of the alpha energy deposition and heating of the fuel ions, and thus reduce the ignition threshold in an ignition experiment.

11.
Phys Rev Lett ; 122(3): 035001, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30735406

RESUMEN

Fuel-ion species dynamics in hydrodynamiclike shock-driven DT^{3}He-filled inertial confinement fusion implosion is quantitatively assessed for the first time using simultaneously measured D^{3}He and DT reaction histories. These reaction histories are measured with the particle x-ray temporal diagnostic, which captures the relative timing between different nuclear burns with unprecedented precision (∼10 ps). The observed 50±10 ps earlier D^{3}He reaction history timing (relative to DT) cannot be explained by average-ion hydrodynamic simulations and is attributed to fuel-ion species separation between the D, T, and ^{3}He ions during shock convergence and rebound. At the onset of the shock burn, inferred ^{3}He/T fuel ratio in the burn region using the measured reaction histories is much higher as compared to the initial gas-filled ratio. As T and ^{3}He have the same mass but different charge, these results indicate that the charge-to-mass ratio plays an important role in driving fuel-ion species separation during strong shock propagation even for these hydrodynamiclike plasmas.

12.
Phys Rev Lett ; 120(12): 125001, 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29694102

RESUMEN

Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.

13.
Phys Rev Lett ; 120(5): 055001, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29481170

RESUMEN

Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700 µm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14} W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14} W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

14.
Phys Rev Lett ; 120(8): 085001, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543010

RESUMEN

Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

15.
Phys Rev Lett ; 118(9): 095002, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28306316

RESUMEN

The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)OPCOB80030-401810.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

16.
Phys Rev Lett ; 117(3): 035001, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27472117

RESUMEN

First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ=140 µm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ∼7000×. Measurements were made at convergences of ∼5 to ∼10× at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both lines of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ∼2× between the waist and the pole, showing asymmetry in the measured growth factors. These new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.

18.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27447511

RESUMEN

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

19.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39093112

RESUMEN

The single-line-of-sight time-resolved x-ray imager (SLOS-TRXI), a fast-gated x-ray imager used for capturing x-ray self-emission in inertial confinement fusion experiments on OMEGA, has been upgraded and characterized. SLOS-TRXI combines an electron-dilation imager and a hybrid complementary metal-oxide-semiconductor (hCMOS) sensor to capture multiple gated frames on a single line of sight with a temporal resolution of ∼40 ps and a spatial resolution of 10 µm. The original hCMOS sensor with four frames was replaced with a newer-generation hCMOS sensor having eight frames. Gate characterizations of both the sensor and the entire SLOS-TRXI diagnostic were performed using ∼10-ps FWHM visible (2ω) and UV (4ω) short-pulse lasers, respectively. A stepped echelon was used to generate a train of five UV laser pulses having an interpulse separation of 30 ± 3 ps. Characterization results of the hCMOS gating (2.28 ± 0.02-ns FWHM on average) and a temporal resolution of the upgraded SLOS-TRXI (34 ± 4-ps FWHM on average) are presented. A temporal magnification for the electron-dilation imager between 40 and 60 was inferred from the characterization results. The spatial resolution of the upgraded SLOS-TRXI remains the same in light of this work.

20.
Phys Rev E ; 109(4-2): 045209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755937

RESUMEN

Precise modeling of shocks in inertial confinement fusion implosions is critical for obtaining the desired compression in experiments. Shock velocities and postshock conditions are determined by laser-energy deposition, heat conduction, and equations of state. This paper describes experiments at the National Ignition Facility (NIF) [E. M. Campbell and W. J. Hogan, Plasma Phys. Control. Fusion 41, B39 (1999)10.1088/0741-3335/41/12B/303] where multiple shocks are launched into a cone-in-shell target made of polystyrene, using laser-pulse shapes with two or three pickets and varying on-target intensities. Shocks are diagnosed using the velocity interferometric system for any reflector (VISAR) diagnostic [P. M. Celliers et al., Rev. Sci. Instrum. 75, 4916 (2004)0034-674810.1063/1.1807008]. Simulated and inferred shock velocities agree well for the range of intensities studied in this work. These directly-driven shock-timing experiments on the NIF provide a good measure of early-time laser-energy coupling. The validated models add to the credibility of direct-drive-ignition designs at the megajoule scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA