Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(23): 16306-16313, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804633

RESUMEN

Transaminases are choice biocatalysts for the synthesis of chiral primary amines, including amino acids bearing contiguous stereocenters. In this study, we employ lysine as a "smart" amine donor in transaminase-catalyzed dynamic kinetic resolution reactions to access ß-branched noncanonical arylalanines. Our mechanistic investigation demonstrates that, upon transamination, the lysine-derived ketone byproduct readily cyclizes to a six-membered imine, driving the equilibrium in the desired direction and thus alleviating the need to load superstoichiometric quantities of the amine donor or deploy a multienzyme cascade. Lysine also shows good overall compatibility with a panel of wild-type transaminases, a promising hint of its application as a smart donor more broadly. Indeed, by this approach, we furnished a broad scope of ß-branched arylalanines, including some bearing hitherto intractable cyclopropyl and isopropyl substituents, with high yields and excellent selectivities.


Asunto(s)
Aminas , Aminoácidos , Lisina , Transaminasas , Transaminasas/metabolismo , Transaminasas/química , Aminas/química , Lisina/química , Aminoácidos/química , Aminoácidos/síntesis química , Biocatálisis , Estructura Molecular
2.
Analyst ; 149(8): 2227-2231, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38517550

RESUMEN

Pure shift NMR experiments greatly enhance spectral resolution by collapsing multiplet structures into singlets and, with water suppression, can be used for aqueous samples. Here, we combine ultra-clean pure-shift NMR (SAPPHIRE) with two different internally encoded water suppression schemes to achieve optimal performance for small molecule and macrocyclic peptide pharmaceuticals in water and acetonitrile-water mixtures.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Espectroscopía de Resonancia Magnética , Preparaciones Farmacéuticas
3.
Pharm Res ; 40(6): 1435-1446, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36414838

RESUMEN

This study applies an emerging analytical technology, wNMR (water proton nuclear magnetic resonance), to assess the stability of aluminum adjuvants and antigen-adjuvant complexes against physical stresses, including gravitation, flow and freeze/thaw. Results from wNMR are verified by conventional analytical technologies, including static light scattering and microfluidic imaging. The results show that wNMR can quickly and noninvasively determine whether an aluminum adjuvant or antigen-adjuvant complex sample has been altered by physical stresses.


Asunto(s)
Adyuvantes Inmunológicos , Aluminio , Aluminio/química , Adyuvantes Inmunológicos/química , Antígenos/química
4.
Nucleic Acids Res ; 49(14): 7870-7883, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34283224

RESUMEN

Risdiplam is the first approved small-molecule splicing modulator for the treatment of spinal muscular atrophy (SMA). Previous studies demonstrated that risdiplam analogues have two separate binding sites in exon 7 of the SMN2 pre-mRNA: (i) the 5'-splice site and (ii) an upstream purine (GA)-rich binding site. Importantly, the sequence of this GA-rich binding site significantly enhanced the potency of risdiplam analogues. In this report, we unambiguously determined that a known risdiplam analogue, SMN-C2, binds to single-stranded GA-rich RNA in a sequence-specific manner. The minimum required binding sequence for SMN-C2 was identified as GAAGGAAGG. We performed all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method, which captured spontaneous binding of a risdiplam analogue to the target nucleic acids. We uncovered, for the first time, a ligand-binding pocket formed by two sequential GAAG loop-like structures. The simulation findings were highly consistent with experimental data obtained from saturation transfer difference (STD) NMR and structure-affinity-relationship studies of the risdiplam analogues. Together, these studies illuminate us to understand the molecular basis of single-stranded purine-rich RNA recognition by small-molecule splicing modulators with an unprecedented binding mode.


Asunto(s)
Compuestos Azo/metabolismo , Atrofia Muscular Espinal/genética , Pirimidinas/metabolismo , Precursores del ARN/genética , Empalme del ARN , Compuestos Azo/química , Compuestos Azo/uso terapéutico , Secuencia de Bases , Sitios de Unión/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Exones/genética , Cinética , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Estructura Molecular , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/metabolismo , Mutación , Fármacos Neuromusculares/química , Fármacos Neuromusculares/metabolismo , Fármacos Neuromusculares/uso terapéutico , Conformación de Ácido Nucleico , Pirimidinas/química , Pirimidinas/uso terapéutico , Precursores del ARN/química , Precursores del ARN/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética
5.
Magn Reson Chem ; 61(1): 22-31, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36166190

RESUMEN

Chloride is the most common counterion used to improve aqueous solubility and enhance stability of small molecule active pharmaceutical ingredients. While several analytical techniques, such as titration, HPLC with charged aerosol detection, and ion chromatography, are currently utilized to assay the level of chloride, they have notable limitations, and these instruments may not be readily available. Here, we present a generally applicable 35 Cl solution NMR method to assay the level of chloride in pharmaceutical compounds. The method uses KClO4 as an internal standard for improved accuracy in comparison with external standard methods, and it was found to be robust, linear over three orders of magnitude, precise (<3% RSD), and accurate (<0.5% absolute error).


Asunto(s)
Cloruros , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética , Solubilidad , Preparaciones Farmacéuticas
6.
Magn Reson Chem ; 61(3): 169-179, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36349476

RESUMEN

The recently reported 19 F-detected dual-optimized inverted 1 JCC 1,n-ADEQUATE experiment and the previously reported 1 H-detected version have been modified to incorporate J-modulation, making it feasible to acquire all 1,1- and 1,n-ADEQUATE correlations as well as 1 JCC and n JCC homonuclear scalar couplings in a single experiment. The experiments are demonstrated using N,N-dimethylamino-2,5,6-trifluoro-3,4-phthalonitrile and N,N-dimethylamino-3,4-phthalonitrile.

7.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985422

RESUMEN

Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from only the first two rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO) method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for 13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.

8.
J Am Chem Soc ; 144(13): 5855-5863, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35333525

RESUMEN

As practitioners of organic chemistry strive to deliver efficient syntheses of the most complex natural products and drug candidates, further innovations in synthetic strategies are required to facilitate their efficient construction. These aspirational breakthroughs often go hand-in-hand with considerable reductions in cost and environmental impact. Enzyme-catalyzed reactions have become an impressive and necessary tool that offers benefits such as increased selectivity and waste limitation. These benefits are amplified when enzymatic processes are conducted in a cascade in combination with novel bond-forming strategies. In this article, we report a highly diastereoselective synthesis of MK-1454, a potent agonist of the stimulator of interferon gene (STING) signaling pathway. The synthesis begins with the asymmetric construction of two fluoride-bearing deoxynucleotides. The routes were designed for maximum convergency and selectivity, relying on the same benign electrophilic fluorinating reagent. From these complex subunits, four enzymes are used to construct the two bridging thiophosphates in a highly selective, high yielding cascade process. Critical to the success of this reaction was a thorough understanding of the role transition metals play in bond formation.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Catálisis
9.
J Org Chem ; 87(4): 2055-2062, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-34590859

RESUMEN

A detailed mechanistic understanding of a benzylic photobromination en route to belzutifan (MK-6482, a small molecule for the treatment of renal cell carcinoma associated with von Hippel-Lindau syndrome) has been achieved using in situ LED-NMR spectroscopy in conjunction with kinetic analysis. Two distinct mechanisms of overbromination, namely, the ionic and radical pathways, have been revealed by this study. The behavior of the major reaction species, including reactants, intermediates, products, and side products, has been elucidated. Comprehensive understanding of both pathways informed and enabled mitigation of a major process risk: a sudden product decomposition. Detailed knowledge of the processes occurring during the reaction and their potential liabilities enabled the development of a robust photochemical continuous flow process implemented for commercial manufacturing.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Enfermedad de von Hippel-Lindau , Carcinoma de Células Renales/complicaciones , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/complicaciones , Neoplasias Renales/patología , Cinética , Espectroscopía de Resonancia Magnética , Enfermedad de von Hippel-Lindau/complicaciones
10.
Analyst ; 147(2): 325-332, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34927633

RESUMEN

Recent technological and synthetic advances have led to a resurgence in the exploration of peptides as potential therapeutics. Understanding peptide conformation in both free and protein-bound states remains one of the most critical areas for successful development of peptide drugs. In this study it was demonstrated that the combination of Size-Exclusion Chromatography with Hydrogen-Deuterium Exchange Mass Spectrometry (SEC-HDX-MS) and Circular Dichroism Spectroscopy (CD) can be used to guide the selection of peptides for further NMR analysis. Moreover, the insights from this workflow guide the choice of the best biologically relevant conditions for NMR conformational studies of peptide ligands in a free state in solution. Combined information about solution conformation character and stability across temperatures and co-solvent compositions greatly expedites selection of optimal conditions for NMR analysis. In total, the combination of SEC-HDX-MS, CD, and NMR into a single complementary workflow greatly accelerates conformational analysis of peptides in the drug discovery lead optimization process.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Dicroismo Circular , Péptidos , Conformación Proteica , Flujo de Trabajo
11.
Phys Chem Chem Phys ; 24(34): 20164-20182, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35996986

RESUMEN

Prediction of anisotropic NMR data directly from solute-medium interaction is of significant theoretical and practical interest, particularly for structure elucidation, configurational analysis and conformational studies of complex organic molecules and natural products. Current prediction methods require an explicit structural model of the alignment medium: a requirement either impossible or impractical on a scale necessary for small organic molecules. Here we formulate a comprehensive mathematical framework for a parametrization protocol that deconvolutes an arbitrary surface of the medium into several simple local landscapes that are distributed over the medium's surface by specific orientational order parameters. The shapes and order parameters of these local landscapes are determined via fitting that maximizes the congruence between experimentally determined anisotropic NMR measurables and their predicted counterparts, thus avoiding the need for an a priori knowledge of the global medium morphology. This method achieves substantial improvements in the accuracy of predicted anisotropic NMR values compared to current methods, as demonstrated herein with sixteen natural products. Furthermore, because this formalism extracts structural commonalities of the medium by combining anisotropic NMR data from different compounds, its robustness and accuracy are expected to improve as more experimental data become available for further re-optimization of fitting parameters.


Asunto(s)
Productos Biológicos , Imagen por Resonancia Magnética , Anisotropía , Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Conformación Molecular
12.
J Nat Prod ; 85(6): 1449-1458, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35622967

RESUMEN

Aureobasidin A (abA) is a natural depsipeptide that inhibits inositol phosphorylceramide (IPC) synthases with significant broad-spectrum antifungal activity. abA is known to have two distinct conformations in solution corresponding to trans- and cis-proline (Pro) amide bond rotamers. While the trans-Pro conformation has been studied extensively, cis-Pro conformers have remained elusive. Conformational properties of cyclic peptides are known to strongly affect both potency and cell permeability, making a comprehensive characterization of abA conformation highly desirable. Here, we report a high-resolution 3D structure of the cis-Pro conformer of aureobasidin A elucidated for the first time using a recently developed NMR-driven computational approach. This approach utilizes ForceGen's advanced conformational sampling of cyclic peptides augmented by sparse distance and torsion angle constraints derived from NMR data. The obtained 3D conformational structure of cis-Pro abA has been validated using anisotropic residual dipolar coupling measurements. Support for the biological relevance of both the cis-Pro and trans-Pro abA configurations was obtained through molecular similarity experiments, which showed a significant 3D similarity between NMR-restrained abA conformational ensembles and another IPC synthase inhibitor, pleofungin A. Such ligand-based comparisons can further our understanding of the important steric and electrostatic characteristics of abA and can be utilized in the design of future therapeutics.


Asunto(s)
Depsipéptidos , Prolina , Depsipéptidos/farmacología , Péptidos Cíclicos/farmacología , Prolina/química , Conformación Proteica
13.
Magn Reson Chem ; 60(2): 210-220, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34469610

RESUMEN

Modification of the recently reported 19 F-detected 1,1-ADEQUATE experiment that incorporates dual-optimization to selectively invert a wide range of 1 JCC correlations in a 1,n-ADEQUATE experiment is reported. Parameters for the dual-optimization segment of the pulse sequence were modified to accommodate the increased size of 1 JCC homonuclear coupling constants of poly- and perfluorinated molecules relative to protonated molecules to allow broadband inversion of the 1 JCC correlations. The observation and utility of isotope shifts are reported for the first time for 1,1- and 1,n-ADEQUATE correlations.

14.
Angew Chem Int Ed Engl ; 61(21): e202117655, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35139257

RESUMEN

At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE-Dt-mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension (1 D-UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H2 O and D2 O washes using an independent pump setup; and 3) a second dimension separation (2 D-UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90 % using as little as a few micrograms of material.


Asunto(s)
Productos Biológicos , Cromatografía Liquida , Espectroscopía de Resonancia Magnética , Solventes
15.
Magn Reson Chem ; 59(6): 628-640, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33486827

RESUMEN

Polyfluorinated and perfluorinated compounds in the environment are a growing health concern. 19 F-detected variants of commonly employed heteronuclear shift correlation experiments such as heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are available; 19 F-detected experiments that employ carbon-carbon homonuclear coupling, in contrast, have never been reported. Herein, we report the measurement of the 1 JCC and n JCC coupling constants of a simple perfluorinated phthalonitrile and the first demonstration of a 19 F-detected 1,1-ADEQUATE experiment.

16.
J Biomol NMR ; 74(10-11): 499-500, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32951153

RESUMEN

Unfortunately, in the original publication, Fig. 5 was published incorrectly. The correct version is given below.

17.
J Biomol NMR ; 74(10-11): 479-498, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32720098

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.


Asunto(s)
Descubrimiento de Drogas/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Diseño de Fármacos , Entropía , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Cinética , Ligandos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Termodinámica , Agua/química
18.
Mol Pharm ; 17(5): 1734-1747, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32267708

RESUMEN

Injectable sustained release dosage forms have emerged as desirable therapeutic routes for patients that require life-long treatments. The prevalence of drug molecules with low aqueous solubility and bioavailability has added momentum toward the development of suspension-based long-acting parenteral (LAP) formulations; the previously undesirable physicochemical properties of Biopharmaceutics Classification System (BCS) Class II/IV compounds are best suited for extended release applications. Effective in vitro release (IVR) testing of crystalline suspensions affirms product quality during early-stage development and provides connections with in vivo performance. However, before in vitro-in vivo correlations (IVIVCs) can be established, it is necessary to evaluate formulation attributes that directly affect IVR properties. In this work, a series of crystalline LAP nanosuspensions were formulated with different stabilizing polymers and applied to a continuous flow-through (USP-4) dissolution method. This technique confirmed the role of salt effects on the stability of polymer-coated nanoparticles through the detection of disparate active pharmaceutical ingredient (API) release profiles. The polymer stabilizers with extended hydrophilic chains exhibited elevated intrapolymer activity from the loss of hydrogen-bond cushioning in dissolution media with heightened ionic strength, confirmed through one-dimensional (1D) 1H NMR and two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) experiments. Thus, steric repulsion within the affected nanosuspensions was limited and release rates decreased. Additionally, the strength of interaction between hydrophobic polymer components and the API crystalline surface contributed to suspension dissolution properties, confirmed through solution- and solid-state spectroscopic analyses. This study provides a unique perspective on the dynamic interface between the crystalline drug and aqueous microenvironment during dissolution.


Asunto(s)
Liberación de Fármacos , Solubilidad , Suspensiones , Preparaciones de Acción Retardada , Difusión , Composición de Medicamentos , Estabilidad de Medicamentos , Nanopartículas , Tamaño de la Partícula , Polímeros/química , Análisis Espectral
19.
Mol Pharm ; 17(2): 530-540, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31895571

RESUMEN

Novel treatment routes are emerging for an array of diseases and afflictions. Complex dosage forms, based on active pharmaceutical ingredients (APIs) with previously undesirable physicochemical characteristics, are becoming mainstream and actively pursued in various pipeline initiatives. To fundamentally understand how constituents in these dosage forms interact on a molecular level, analytical methods need to be developed that encompass selectivity and sensitivity requirements previously reserved for a myriad of in vitro techniques. The knowledge of precise chemical interactions between drugs and excipients in a dosage form can streamline formulation development and process screening capabilities through the identification of properties that influence rates and mechanisms of drug release in a cost-effective manner, relative to long-term in vivo studies. Through this work, a noncompendial in vitro release (IVR) method was developed that distinguished the presence of individual components in a complex crystalline nanosuspension environment. Doravirine was formulated as a series of long-acting injectable nanosuspensions with assorted excipients, using low- and high-energy wet media milling methods. IVR behavior of all formulation components were monitored using a robust continuous flow-through (CFT) dissolution setup (USP-4 apparatus) with on-line 1H NMR end-analysis (flow-NMR). Results from this investigation led to a better understanding of formulation parameter influences on nanosuspension stability, surface chemistry, and dissolution behavior. Flow-NMR can be applied to a broad range of dosage forms in which specific molecular interactions from the solution microenvironment require further insight to enhance product development capabilities.


Asunto(s)
Composición de Medicamentos/métodos , Liberación de Fármacos , Inyecciones , Espectroscopía de Resonancia Magnética/métodos , Nanopartículas/administración & dosificación , Suspensiones/administración & dosificación , Suspensiones/farmacocinética , Química Farmacéutica/instrumentación , Estabilidad de Medicamentos , Excipientes/química , Técnicas In Vitro/métodos , Nanopartículas/química , Tamaño de la Partícula , Piridonas/química , Solubilidad , Triazoles/química
20.
Magn Reson Chem ; 58(7): 625-640, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31912914

RESUMEN

Nonuniform sampling (NUS) strategies are developed for acquiring highly resolved 1,1-ADEQUATE spectra, in both conventional and homodecoupled (HD) variants with improved sensitivity. Specifically, the quantile-directed and Poisson gap methods were critically compared for distributing the samples nonuniformly, and the quantile schedules were further optimized for weighting. Both maximum entropy and iterative soft thresholding spectral estimation algorithms were evaluated. All NUS approaches were robust when the degree of data reduction is moderate, on the order of a 50% reduction of sampling points. Further sampling reduction by NUS is facilitated by using weighted schedules designed by the quantile method, which also suppresses sampling noise well. Seed independence and the ability to specify the sample weighting in quantile scheduling are important in optimizing NUS for 1,1-ADEQUATE data acquisition. Using NUS yields an improvement in sensitivity, while also making longer evolution times accessible that would be difficult or impractical to attain by uniform sampling. Theoretical predictions for the sensitivity enhancements in these experiments are in the range of 5-20%; NUS is shown to disambiguate weak signals, reveal some n JCC correlations obscured by noise, and improve signal strength relative to uniform sampling in the same experimental time. This work presents sample schedule development for applying NUS to challenging experiments. The schedules developed here are made available for general use and should facilitate the broader utilization of ADEQUATE experiments (including 1,1-, 1,n-, and HD- variants) for challenging structure elucidation problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA