Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37420619

RESUMEN

The Nordic hamstring exercise (NHE) is a very popular exercise used to improve eccentric strength and prevent injuries. The aim of this investigation was to assess the reliability of a portable dynamometer that measures maximal strength (MS) and rate of force development (RFD) during the NHE. Seventeen physically active participants (34.8 ± 4.1 years; n = 2 women and n = 15 men) participated. Measurements occurred on two different days separated by 48-72 h. Test-retest reliability was calculated for bilateral MS and RFD. No significant test-retest differences were observed in NHE (test-retest [95% CI, confidence interval]) for MS [-19.2 N (-67.8; 29.4); p = 0.42] and RFD [-70.4 N·s-1 (-178.4; 37.8); p = 0.19]. MS showed high reliability (intraclass correlation coefficient [ICC] [95% CI], =0.93 [0.80-0.97] and large within-subject correlation between test and retest [r = 0.88 (0.68; 0.95)]. RFD displayed good reliability [ICC = 0.76 (0.35; 0.91)] and moderate within-subject correlation between test and retest [r = 0.63 (0.22; 0.85)]. Bilateral MS and RFD displayed a coefficient of variation of 3.4% and 4.6%, respectively, between tests. The standard error of measurement and the minimal detectable change for MS was 44.6 arbitrary units (a.u.) and 123.6 a.u., and 104.6 a.u. and 290.0 a.u. for peak RFD. This study shows that MS and RFD can be measured for NHE using a portable dynamometer. However, not all exercises are suitable to apply to determine RFD, so caution must be taken when analyzing RFD during NHE.


Asunto(s)
Músculos Isquiosurales , Fuerza Muscular , Masculino , Humanos , Femenino , Reproducibilidad de los Resultados , Ejercicio Físico , Terapia por Ejercicio , Músculo Esquelético
2.
Eur J Appl Physiol ; 120(5): 1097-1109, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32212025

RESUMEN

PURPOSE: This study aims to analyze swimmers' oxygen uptake kinetics ([Formula: see text]K) and bioenergetic profiles in 50, 100, and 200 m simulated swimming events and determine which physiological variables relate with performance. METHODS: Twenty-eight well-trained swimmers completed an incremental test for maximal oxygen uptake (Peak-[Formula: see text]) and maximal aerobic velocity (MAV) assessment. Maximal trials (MT) of 50, 100, and 200-m in front crawl swimming were performed for [Formula: see text]K and bioenergetic profile. [Formula: see text]K parameters were calculated through monoexponential modeling and by a new growth rate method. The recovery phase was used along with the blood lactate concentration for bioenergetics profiling. RESULTS: Peak-[Formula: see text] (57.47 ± 5.7 ml kg-1 min-1 for male and 53.53 ± 4.21 ml kg-1 min-1 for female) did not differ from [Formula: see text]peak attained at the 200-MT for female and at the 100 and 200-MT for male. From the 50-MT to 100-MT and to the 200-MT the [Formula: see text]K presented slower time constants (8.6 ± 2.3 s, 11.5 ± 2.4 s and 16.7 ± 5.5 s, respectively), the aerobic contribution increased (~ 34%, 54% and 71%, respectively) and the anaerobic decreased (~ 66%, 46% and 29%, respectively), presenting a cross-over in the 100-MT. Both energy systems, MAV, Peak-[Formula: see text], and [Formula: see text] peak of the MT's were correlated with swimming performance. DISCUSSION: The aerobic energy contribution is an important factor for performance in 50, 100, and 200-m, regardless of the time taken to adjust the absolute oxidative response, when considering the effect on a mixed-group regarding sex. [Formula: see text]K speeding could be explained by a faster initial pacing strategy used in the shorter distances, that contributed for a more rapid increase of the oxidative contribution to the energy turnover.


Asunto(s)
Metabolismo Energético/fisiología , Consumo de Oxígeno , Oxígeno/metabolismo , Desempeño Psicomotor/fisiología , Natación/fisiología , Adolescente , Femenino , Humanos , Cinética , Ácido Láctico/sangre , Masculino
3.
J Sports Sci ; 37(17): 2037-2044, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31079555

RESUMEN

Leucine metabolites may reduce training-induced inflammation; however, there is scant evidence for this assertion. We conducted a double-blind randomized controlled pragmatic trial where 40 male participants were allocated into 4 groups: α-hydroxyisocaproic acid group ([α-HICA], n = 10, Fat-free mass [FFM] = 62.0 ± 7.1 kg), ß-hydroxy-ß-methylbutyrate free acid group ([HMB-FA], n = 11, FFM = 62.7 ± 10.5 kg), calcium ß-hydroxy-ß-methylbutyrate group ([HMB-Ca], n = 9, FFM = 65.6 ± 10.1 kg) or placebo group ([PLA]; n = 10, FFM = 64.2 ± 5.7 kg). An 8-week whole-body resistance training routine (3 training sessions per week) was employed to induce gains in skeletal-muscle thickness. Skeletal muscle thickness (MT), one repetition maximum (1RM), interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP) and tumour necrosis factor alpha (TNF-α) were assessed at baseline and at the end of weeks 4 and 8. Time-dependent increases were detected from baseline to week 8 for MT (vastus lateralis: p = 0.009; rectus femoris: p = 0.018), 1RM (back squat: α-HICA, 18.5% ± 18.9%; HMB-FA, 23.2% ± 16%; HMB-Ca, 10.5% ± 13.8%; PLA, 19.7% ± 9% and bench press: α-HICA, 13.8% ± 19.1%; HMB-FA, 15.5% ± 9.3%; HMB-Ca, 10% ± 10.4%; PLA, 14.4 ± 11.3%, both p < 0.001), IL-6, hsCRP (both p < 0.001) and TNF-α (p = 0.045). No differences were found between groups at any time point. No leucine metabolite attenuated inflammation during training. Additionally, backwards elimination regressions showed that no circulating inflammatory marker consistently shared variance with the change in any outcome. Using leucine metabolites to modulate inflammation cannot be recommended from the results obtained herein. Furthermore, increases in inflammatory markers, from training, do not correlate with any outcome variable and are likely the result of training adaptations.


Asunto(s)
Caproatos/administración & dosificación , Inflamación/sangre , Leucina/metabolismo , Entrenamiento de Fuerza , Fenómenos Fisiológicos en la Nutrición Deportiva , Valeratos/administración & dosificación , Adulto , Biomarcadores/sangre , Composición Corporal , Proteína C-Reactiva/análisis , Calcio , Suplementos Dietéticos , Método Doble Ciego , Humanos , Interleucina-6/sangre , Masculino , Fuerza Muscular , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Factor de Necrosis Tumoral alfa/sangre , Adulto Joven
4.
Eur J Appl Physiol ; 118(3): 573-583, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29313111

RESUMEN

PURPOSE: Long-term training influence on athletes' immune cell response to acute exercise has been poorly studied, despite the complexity of both chronic and acute adaptations induced by training. The purpose of the study is to study the influence of a 4-month swimming training cycle on the immune cell response to a high-intensity training session, during 24 h of recovery, considering sex, maturity, and age group. METHODS: Forty-three swimmers (16 females, 14.4 ± 1.1 years; 27 males, 16.2 ± 2.0) performed a standardized high-intensity session, after the main competition of the first (M1), and second (M2) macrocycles. Blood samples were collected before (Pre), immediately after (Post), 2 h after (Post2h) and 24 h after (Post24h) exercise. Haemogram and lymphocytes subsets were assessed by an automatic cell counter and by flow cytometry, respectively. Subjects were grouped according to sex, competitive age groups, or pubertal Tanner stages. Results express the percentage of relative differences from Pre to Post, Post2h and Post24h. Upper respiratory symptoms (URS) and training load were quantified. RESULTS: At M2, we observed smaller increases of leukocytes (M1: 14.0 ± 36.3/M2: 2.33 ± 23.0%) and neutrophils (M1: 57.1 ± 71.6/M2: 38.9 ± 49.9%) at Post; and less efficient recoveries of total lymphocytes (M1: - 22.0 ± 20.1/M2: - 30.0 ± 18.6%) and CD19+ (M1: 4.09 ± 31.1/M2: - 19.1 ± 24.4%) at Post2h. At Post2h, the increment of CD4+/CD8+ was smaller in youth (M1: 21.5 ± 16.0/M2: 9.23 ± 21.4%), and bigger in seniors (M1: 3.68 ± 9.21/M2: 23.2 ± 15.0%); and at Post24h late pubertal swimmers' CD16+56+ recovered less efficiently (M1: - 0.66 ± 34.6/M2: - 20.5 ± 34.2%). CONCLUSIONS: The training cycle induced an attenuated immune change immediately after exercise and a less efficient recovery of total lymphocytes, involving an accentuated CD19+ decrease. The concomitant higher URS frequency suggests a potential immune depression and a longer interval of susceptibility to infection.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad/métodos , Subgrupos Linfocitarios , Natación/fisiología , Adolescente , Femenino , Humanos , Masculino
5.
J Sports Sci ; 36(1): 56-63, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28095747

RESUMEN

Two experiments (n = 10) were conducted to determine the effects of roller massager (RM) on ankle plantar flexor muscle recovery after exercise-induced muscle damage (EIMD). Experiment 1 examined both functional [i.e., ankle plantar flexion maximal isometric contraction and submaximal (30%) sustained force; ankle dorsiflexion maximal range of motion and resistance to stretch; and medial gastrocnemius pain pressure threshold] and morphological [cross-sectional area, thickness, fascicle length, and fascicle angle] variables, before and immediately, 1, 24, 48, and 72 h after an EIMD stimulus. Experiment 2 examined medial gastrocnemius deoxyhaemoglobin concentration kinetics before and 48 h after EIMD. Participants performed both experiments twice: with (RM) and without (no-roller massager; NRM) the application of a RM (6 × 45 s; 20-s rest between sets). RM intervention did not alter the functional impairment after EIMD, as well as the medial gastrocnemius morphology and oxygenation kinetics (P > 0.05). Although, an acute increase of ipsilateral (RM = + 19%, NRM = -5%, P = 0.032) and a strong tendency for contralateral (P = 0.095) medial gastrocnemius pain pressure threshold were observed. The present results suggest that a RM has no effect on plantar flexors performance, morphology, and oxygenation recovery after EIMD, except for muscle pain pressure threshold (i.e., a soreness).


Asunto(s)
Masaje/métodos , Músculo Esquelético/lesiones , Mialgia/terapia , Traumatismos del Tobillo/patología , Traumatismos del Tobillo/fisiopatología , Traumatismos del Tobillo/terapia , Articulación del Tobillo/fisiopatología , Femenino , Humanos , Contracción Isométrica/fisiología , Masculino , Masaje/instrumentación , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Mialgia/patología , Mialgia/fisiopatología , Consumo de Oxígeno , Umbral del Dolor/fisiología , Rango del Movimiento Articular/fisiología , Adulto Joven
6.
J Strength Cond Res ; 32(4): 902-910, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29570594

RESUMEN

Fatela, P, Reis, JF, Mendonca, GV, Freitas, T, Valamatos, MJ, Avela, J, and Mil-Homens, P. Acute neuromuscular adaptations in response to low-intensity blood flow restricted exercise and high-intensity resistance exercise: are there any differences? J Strength Cond Res 32(4): 902-910, 2018-Numerous studies have reported similar neuromuscular adaptations between low-intensity (LI) blood-flow restricted exercise (BFRE) and high-intensity (HI) resistance training. Unfortunately, none of these experimental designs individualized blood flow restriction (BFR) levels to each participant. Thus, their findings are difficult to interpret. We aimed at comparing the acute effects of LI BFR (80% of absolute vascular occlusion pressure) with LI non-BFR and HI training on muscle torque, activation, and neuromuscular fatigue. Ten men (23.8 ± 5.4 years) exercised at 20 and 75% of 1 repetition maximum with and without BFR (for LI). Blood flow restriction pressure was determined individually using resting blood-flow measurements. Torque was determined during maximal voluntary contractions (MVCs) at pre-exercise and postexercise time points. Surface electromyographic activity (root mean square [RMS] and median frequency [MF]) was recorded for the rectus femoris (RF) and vastus medialis (VM) muscles, before and after each session of training, during isometric contractions at 20% MVC. Torque decreased post-HI and LI BFR (-9.5 and -7.8%, respectively; p < 0.01), but not after LI non-BFR. The MF was reduced following HI training in the VM and the RF muscles (-5.3 and -12.5%, respectively; p ≤ 0.05). Conversely, the impact of LI BFR on reducing MF was limited to the RF muscle (-10.7%, p ≤ 0.05). Finally, when compared to all other conditions, RMS values were consistently higher during submaximal contractions performed after HI training (p ≤ 0.05). Thus, we conclude that, despite enhancing the acute magnitude of muscular activation and fatigue, LI BFR exercise exerts a less profound impact on neuromuscular function than HI resistance training.


Asunto(s)
Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Entrenamiento de Fuerza/métodos , Adaptación Fisiológica , Adulto , Estudios Cruzados , Electromiografía , Ejercicio Físico/fisiología , Hemodinámica , Humanos , Contracción Isométrica/fisiología , Masculino , Músculo Cuádriceps/fisiología , Descanso , Torque , Adulto Joven
7.
Eur J Appl Physiol ; 116(5): 985-95, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27017495

RESUMEN

PURPOSE: There is some evidence that muscular activation during exercise is enhanced by higher levels of blood flow restriction (BFR). However, the impact of different relative levels of BFR on the acute neuromuscular response to resistance exercise is not yet fully understood. We examined the acute effects of low-intensity knee extensions [20 % of 1-repetition maximum (1RM)] with BFR on muscle activation, neuromuscular fatigue and torque in the rectus femoris (RF) and vastus medialis (VM) muscles. METHODS: Fourteen men (24.8 ± 5.4 years) exercised at 20 % 1RM combined with 40, 60 and 80 % BFR. Restrictive pressures were calculated based on direct blood-flow measurements taken at rest on each participant. Torque was determined during pre- and post-exercise maximal voluntary contractions. Surface electromyographic activity [root mean square (RMS)] was obtained during dynamic and sustained isometric contractions before and after exercise. The median frequency (MF) of the electromyographic power spectrum was computed for isometric contractions. RESULTS: Torque only decreased in the 80 % BFR condition (-5.2 %; p < 0.01). Except for the VM in the 40 % BFR, MF decreased in both muscles post-exercise in all conditions (p < 0.01). MF decrements were of greater magnitude post-exercise at higher levels of BFR. RMS increased within all sets in both muscles (p < 0.01) and attained higher values in the 80 % BFR condition; except for set 1 in the RF muscle (p < 0.01). CONCLUSION: Muscular activation, as well as neuromuscular fatigue, varies as a function of relative BFR intensity. Therefore, the individual determination of vascular restriction levels is crucial before engaging in BFR exercise.


Asunto(s)
Ejercicio Físico/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Adulto , Electromiografía/métodos , Humanos , Contracción Isométrica/fisiología , Rodilla/fisiología , Articulación de la Rodilla/fisiología , Masculino , Músculo Cuádriceps/fisiología , Entrenamiento de Fuerza/métodos , Descanso/fisiología , Torque , Adulto Joven
8.
J Strength Cond Res ; 29(10): 2836-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25148466

RESUMEN

The purpose of this study was to understand the ventilatory and physiological responses immediately below and above the maximal lactate steady-state (MLSS) velocity and to determine the relationship of oxygen uptake (VO2) kinetics parameters with performance, in swimmers. Competitive athletes (N = 12) completed in random order and on different days a 400-m all-out test, an incremental step test comprising 5 × 250- and 1 × 200-m stages and 30 minutes at a constant swimming velocity (SV) at 87.5, 90, and 92.5% of the maximal aerobic velocity for MLSS velocity (MLSSv) determination. Two square-wave transitions of 500 m, 2.5% above and below the MLSSv were completed to determine VO2 on-kinetics. End-exercise VO2 at 97.5 and 102.5% of MLSSv represented, respectively, 81 and 97% of VO2max; the latter was not significantly different from maximal VO2 (VO2max). The VO2 at MLSSv (49.3 ± 9.2 ml·kg(-1)·min(-1)) was not significantly different from the second ventilatory threshold (VT2) (51.3 ± 7.6 ml·kg(-1)·min(-1)). The velocity associated with MLSS seems to be accurately estimated by the SV at VT2 (vVT2), and vVO2max also seems to be estimated with accuracy from the central 300-m mean velocity of a 400-m trial, indicators that represent a helpful tool for coaches. The 400-m swimming performance (T400) was correlated with the time constant of the primary phase VO2 kinetics (τp) at 97.5% MLSSv, and T800 was correlated with τp in both 97.5 and 102.5% of MLSSv. The assessment of the VO2 kinetics in swimming can help coaches to build training sets according to a swimmer's individual physiological response.


Asunto(s)
Umbral Anaerobio/fisiología , Natación/fisiología , Adolescente , Rendimiento Atlético/fisiología , Prueba de Esfuerzo , Humanos , Cinética , Masculino , Consumo de Oxígeno/fisiología , Distribución Aleatoria , Adulto Joven
9.
Sports Biomech ; : 1-13, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38164700

RESUMEN

Running synchronised to external cueing is often implemented in both clinical and training settings, and isochronous cueing has been shown to improve running economy. However, such cueing disregards the natural stride-to-stride fluctuations present in human locomotion which is thought to reflect higher levels of adaptability. The present study aimed to investigate how alterations in the temporal structure of cueing affect stride-to-stride variability during running. We hypothesised that running using cueing with a fractal-like structure would preserve the natural stride-to-stride variability of young adults. Thirteen runners performed four 8-min trials: one uncued (UNC) trial and three cued trials presenting an isochronous (ISO), a fractal (FRC) and a random (RND) structure. Repeated measures ANOVAs were used to identify changes in the dependent variables. We have found no main effect on the cardiorespiratory parameters, whereas a significant main effect was observed in the temporal structure of stride-to-stride variability. During FRC, the participants were able to retain the fractal patterns of their natural locomotor variability observed during the UNC condition, while during the ISO and RND they exhibited more random of fluctuations (i.e., lower values of fractal scaling). Our results demonstrate that cueing based on the natural stride-to-stride fluctuations opens new avenues for training and rehabilitation.

11.
Front Physiol ; 14: 1241948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645566

RESUMEN

Purpose: This study aimed to evaluate the physiological responses associated with the stroke length (SL) and stroke rate (SR) changes as swimming velocity increases during an incremental step-test. Moreover, this study also aimed to verify if SL and SR relationships toward maximal oxygen uptake (V̇O2max), gas respiratory compensation point (RCP), exchange threshold (GET), and swimming cost can be applied to the management of endurance training and control aerobic pace. Methods: A total of 19 swimmers performed the incremental test until volitional exhaustion, with each stage being designed by percentages of the 400 m (%v400) maximal front crawl velocity. V̇O2max, GET, RCP, and the respective swimming velocities (v) were examined. Also, the stroke parameters, SL, SR, the corresponding slopes (SLslope and SRslope), and the crossing point (Cp) between them were determined. Results: GET and RCP corresponded to 70.6% and 82.4% of V̇O2max (4185.3 ± 686.1 mL min-1), and V̇O2 at Cp, SLslope, and SRslope were observed at 129.7%, 75.3%, and 61.7% of V̇O2max, respectively. The swimming cost from the expected V̇O2 at vSLslope (0.85 ± 0.18 kJ m-1), vSRslope (0.77 ± 0.17 kJ m-1), and vCp (1.09 ± 0.19 kJ m-1) showed correlations with GET (r = 0.73, 0.57, and 0.59, respectively), but only the cost at vSLslope and vCp correlated to RCP (0.62 and 0.69) and V̇O2max (0.70 and 0.79). Conclusion: SL and SR exhibited a distinctive pattern for the V̇O2 response as swimming velocity increased. Furthermore, the influence of SL on GET, RCP, and V̇O2max suggests that SLslope serves as the metabolic reference of heavy exercise intensity, beyond which the stroke profile defines an exercise zone with high cost, which is recommended for an anaerobic threshold and aerobic power training. In turn, the observed difference between V̇O2 at SRslope and GET suggests that the range of velocities between SL and SR slopes ensures an economical pace, which might be recommended to develop long-term endurance. The results also highlighted that the swimming intensity paced at Cp would impose a high anaerobic demand, as it is located above the maximal aerobic velocity. Therefore, SLslope and SRslope are suitable indexes of submaximal to maximal aerobic paces, while Cp's meaning still requires further evidence.

12.
Eur J Appl Physiol ; 112(5): 1689-97, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21879352

RESUMEN

This study aimed to characterise both the VO2 kinetics within constant heavy-intensity swimming exercise, and to assess the relationships between VO2 kinetics and other parameters of aerobic fitness, in well-trained swimmers. On separate days, 21 male swimmers completed: (1) an incremental swimming test to determine their maximal oxygen uptake (VO2 max), first ventilatory threshold (VT), and the velocity associated with VO2max (vVO(2 max)) and (2) two square-wave transitions from rest to heavy-intensity exercise, to determine their VO2 kinetics. All the tests involved breath-by-breath analysis of freestyle swimming using a swimming snorkel. VO2 kinetics was modelled with two exponential functions. The mean values for the incremental test were 56.0 ± 6.0 ml min(-1) kg(-1), 1.45 ± 0.08 m s(-1); and 42.1 ± 5.7 ml min(-1) kg(-1) for VO2 max, vVO(2 max) and VT, respectively. For the square-wave transition, the time constant of the primary phase (sp) averaged 17.3 ± 5.4 s and the relevant slow component (A'sc) averaged 4.8 ± 2.9 ml min(-1) kg(-1) [representing 8.9% of the end-exercise VO2 (%A'sc)]. sp was correlated with vVO(2 max) (r = -0.55, P = 0.01), but not with either VO2max (r = 0.05, ns) or VT (r = 0.14, ns). The %A' sc did not correlate with either VO2max (r = -0.14, ns) or vVO(2 max) (r = 0.06, ns), but was inversely related with VT (r = -0.61, P < 0.01). This study was the first to describe the VO2 kinetics in heavy-intensity swimming using specific swimming exercise and appropriate methods. As has been demonstrated in cycling, faster VO2 kinetics allow higher aerobic power outputs to be attained. The slow component seems to be reduced in swimmers with higher ventilatory thresholds.


Asunto(s)
Consumo de Oxígeno/fisiología , Aptitud Física/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Natación/fisiología , Pruebas Respiratorias , Ejercicio Físico/fisiología , Humanos , Cinética , Masculino , Músculo Esquelético/fisiología , Resistencia Física/fisiología , Adulto Joven
13.
Artículo en Inglés | MEDLINE | ID: mdl-35627748

RESUMEN

The current case study aimed to quantify within-subjects correlations between training load and well-being in elite male beach soccer players. Data were obtained over three consecutive days during the preparation camp for the FIFA Beach Soccer World Cup Russia 2021. The session rating of perceived exertion (s-RPE) and external training load metrics using global positioning system (GPS) were recorded. Eleven players reported perceived well-being (sleep quality, fatigue, muscle soreness and stress) using a Likert scale (Hooper Index) before breakfast. Within-subjects correlation coefficients between workload and well-being were calculated. Workload metrics and perceived well-being indices were significantly lower on day three than on days one and two. The Hooper Index presented a very large positive correlation with s-RPE (r = 0.86 [0.67, 0.94], 95% confidence interval, CI), exposure time (r = 0.88 [0.71, 0.95]), total distance (r = 0.83 [0.60, 0.93]), high-speed distance (r = 0.77 [0.50, 0.91]), and number of sprints (r = 0.75 [0.47, 0.90]). Sleep quality presented a moderate to large positive correlation with s-RPE (r = 0.51 [0.11, 0.77]), exposure time (r = 0.50 [0.10, 0.76]), high-speed distance (r = 0.53 [0.15, 0.78]), number of sprints (r = 0.62 [0.28, 0.83]) and total distance (r = 0.41 [0.18, 0.78]). Fatigue presented a large to very large positive correlation with s-RPE (r = 0.85 [0.66, 0.94]), exposure time (r = 0.90 [0.78, 0.96]), total distance (r = 0.86 [0.68, 0.94]), high-speed distance (r = 0.65 [0.31, 0.84]) and number of sprints (r = 0.56 [0.18, 0.79]). Muscle soreness presented a large to very large positive correlation with s-RPE (r = 0.79 [0.56, 0.91]), exposure time (r = 0.83 [0.62, 0.93]), total distance (r = 0.81 [0.59, 0.92]), high-speed distance (r = 0.75 [0.47, 0.89]) and number of sprints (r = 0.59 [0.22, 0.81]). Overall, workload presented a meaningful correlation with perceived well-being indices in elite male beach soccer players during a training camp. These findings suggest that workload metrics and perceived well-being indices can be implemented into the daily routine of an elite beach soccer team, which may assist coaches, sports scientists, and practitioners in better preparing players for beach soccer competitions.


Asunto(s)
Fútbol , Fatiga , Sistemas de Información Geográfica , Humanos , Masculino , Mialgia , Fútbol/fisiología , Carga de Trabajo
14.
Artículo en Inglés | MEDLINE | ID: mdl-35055684

RESUMEN

The present study sought to investigate if faster upper body oxygen uptake (VO2) and hemoglobin/myoglobin deoxygenation ([HHb]) kinetics during heavy intensity exercise were associated with a greater upper body repeated-sprint ability (RSA) performance in a group of judokas and in a group of individuals of heterogenous fitness level. Eight judokas (JT) and seven untrained healthy participants (UT) completed an incremental step test, two heavy intensity square-wave transitions and an upper body RSA test consisting of four 15 s sprints, with 45 s rest, from which the experimental data were obtained. In the JT group, VO2 kinetics, [HHb] kinetics and the parameters determined in the incremental test were not associated with RSA. However, when the two groups were combined, the amplitude of the primary phase VO2 and [HHb] were positively associated with the accumulated work in the four sprints (ΣWork). Additionally, maximal aerobic power (MAP), peak VO2 and the first ventilatory threshold (VT1) showed a positive correlation with ΣWork and an inverse correlation with the decrease in peak power output (Dec-PPO) between the first and fourth sprints. Faster VO2 and [HHb] kinetics do not seem to be associated with an increased upper body RSA in JT. However, other variables of aerobic fitness seem to be associated with an increased upper body RSA performance in a group of individuals with heterogeneous fitness level.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Humanos , Cinética , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología
15.
Nutrition ; 102: 111694, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810579

RESUMEN

OBJECTIVES: This study aimed to test whether athlete-specific, bioelectrical, impedance-based equations to estimate fat-free mass (FFM) could be more accurate than generalized equations when testing resistance-trained exercisers. METHODS: A total of 50 resistance-trained men (age 30.9 ± 7.4 y; body mass index: 25.3 ± 2.2 kg/m2) and 20 men from the general population (age 29.9 ± 9.1 y; body mass index: 22.8 ± 2.4 kg/m2) underwent bioelectrical impedance and dual-energy x-ray absorptiometry (DXA) evaluations. FFM was derived by one bioelectrical impedance-based equation specific for athletes and three generalized equations, all developed with foot-to-hand bioimpedance technologies at a 50 kHz frequency. DXA was the reference method for the FFM assessment. RESULTS: Compared with DXA, when assessing the resistance-trained participants, the athletic-specific equation had neither mean (-0.89 kg; P = 0.789) or proportional bias (r = -0.104; P = 0.474) with a coefficient of determination equal to R2 = 0.91. In contrast, the three generalized predictive equations overestimated FFM (range, 4.11-5.37 kg; P < 0.05) with R2 ranging from 0.84 to 0.90. The athletic-specific equation underestimated FFM in the general population participants (-2.93 kg; P < 0.05). CONCLUSIONS: When assessing body composition in resistance-trained exercisers, specific equations for athletes should be preferred to generalized ones to avoid an overestimation in FFM. Furthermore, athlete-specific and generalized formulas cannot be used interchangeably, even when assessing body composition in the general population.


Asunto(s)
Composición Corporal , Deportes , Absorciometría de Fotón/métodos , Adulto , Índice de Masa Corporal , Impedancia Eléctrica , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
16.
Front Nutr ; 9: 934438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938106

RESUMEN

Introduction: The effects of dietary protein on body composition and physical performance seemingly depend on the essential amino acid profile of the given protein source, although controversy exists about whether animal protein sources may possess additional anabolic properties to plant-based protein sources. Purpose: To compare the effects of a novel plant-based protein matrix and whey protein supplementation on body composition, strength, power, and endurance performance of trained futsal players. Methods: Fifty male futsal players were followed during 8 weeks of supplementation, with 40 completing the study either with plant-based protein (N = 20) or whey protein (N = 20). The following measures were assessed: bone mineral content, lean body mass, and fat mass; muscle thickness of the rectus femoris; total body water; blood glucose, hematocrit, C-reactive protein, aspartate aminotransferase, alanine aminotransferase, creatine kinase, creatinine, and estimated glomerular filtration rate; salivary cortisol; maximal strength and 1-RM testing of the back squat and bench press exercises; muscle power and countermovement jump; VO2max and maximal aerobic speed. Subjects were asked to maintain regular dietary habits and record dietary intake every 4 weeks through 3-day food records. Results: No differences in any variable were observed between groups at baseline or pre- to post-intervention. Moreover, no time*group interaction was observed in any of the studied variables, and a time effect was only observed regarding fat mass reduction. Conclusions: Supplementing with either a novel plant-based protein matrix or whey protein did not affect any of the variables assessed in high-level futsal players over 8 wks. These results suggest that whey protein does not possess any unique anabolic properties over and above those of plant-based proteins when equated to an essential amino acid profile in the population studied. Furthermore, when consuming a daily protein intake >1.6 g/kg BW.day-1, additional protein supplementation does not affect body composition or performance in trained futsal players, regardless of protein type/source.

17.
Biology (Basel) ; 11(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36138734

RESUMEN

This study aimed to compare muscle strength and power indicators according to bioimpedance spectroscopy's phase angle (PhA) values, in resistance-trained (RT) men, while exploring associations between PhA and performance. Forty-four men aged 18−45 years, engaged in RT, were allocated according to PhA tertiles. Lean soft tissue (LST) and fat mass (%FM) were assessed using dual-energy x-ray absorptiometry; dynamic muscle strength using 1 repetition maximum (1RM) of bench press (BP) and back squat (BS) and muscle power using Wingate test (WT) and countermovement jump (CMJ). For WT and CMJ, the 3rd tertile was significantly higher than the 1st tertile (p = 0.027 and p = 0.018, respectively). Regarding BP 1RM, the 3rd tertile was significantly higher than the 2nd tertile (p = 0.037). LST better explained the variability in the WT, BS and BP (p =< 0.001), while %FM better accounted for jump height in CMJ (p =< 0.001). PhA was a predictor of performance in both CMJ (p = 0.040) and BP (p = 0.012), independently of LST and %FM. Participants with higher PhA also displayed superior muscle strength of the upper limbs and greater muscle power of the lower limbs. PhA displayed significant moderate associations with performance in CMJ and BP, even after controlling for body composition. Still, LST was the most important predictor of muscle strength and power.

18.
Front Physiol ; 13: 982874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246138

RESUMEN

The time sustained during exercise with oxygen uptake (V̇O2) reaching maximal rates (V̇O2peak) or near peak responses (i.e., above second ventilatory threshold [t@VT2) or 90% V̇O2peak (t@90%V̇O2peak)] is recognized as the training pace required to enhance aerobic power and exercise tolerance in the severe domain (time-limit, tLim). This study compared physiological and performance indexes during continuous and intermittent trials at maximal aerobic velocity (MAV) to analyze each exercise schedule, supporting their roles in conditioning planning. Twenty-two well-trained swimmers completed a discontinuous incremental step-test for V̇O2peak, VT2, and MAV assessments. Two other tests were performed in randomized order, to compare continuous (CT) vs. intermittent trials (IT100) at MAV until exhaustion, to determine peak oxygen uptake (Peak-V̇O2) and V̇O2 kinetics (V̇O2K). Distance and time variables were registered to determine the tLim, t@VT2, and t@90%V̇O2peak tests. Blood lactate concentration ([La-]) was analyzed, and rate of perceived exertion (RPE) was recorded. The tests were conducted using a breath-by-breath apparatus connected to a snorkel for pulmonary gas sampling, with pacing controlled by an underwater visual pacer. V̇O2peak (55.2 ± 5.6 ml·kg·min-1) was only reached in CT (100.7 ± 3.1 %V̇O2peak). In addition, high V̇O2 values were reached at IT100 (96.4 ± 4.2 %V̇O2peak). V̇O2peak was highly correlated with Peak-V̇O2 during CT (r = 0.95, p < 0.01) and IT100 (r = 0.91, p < 0.01). Compared with CT, the IT100 presented significantly higher values for tLim (1,013.6 ± 496.6 vs. 256.2 ± 60.3 s), distance (1,277.3 ± 638.1 vs. 315.9 ± 63.3 m), t@VT2 (448.1 ± 211.1 vs. 144.1 ± 78.8 s), and t@90%V̇O2peak (321.9 ± 208.7 vs. 127.5 ± 77.1 s). V̇O2K time constants (IT100: 25.9 ± 9.4 vs. CT: 26.5 ± 7.5 s) were correlated between tests (r = 0.76, p < 0.01). Between CT and IT100, tLim were not related, and RPE (8.9 ± 0.9 vs. 9.4 ± 0.8) and [La-] (7.8 ± 2.7 vs. 7.8 ± 2.8 mmol·l-1) did not differ between tests. MAV is suitable for planning swimming intensities requiring V̇O2peak rates, whatever the exercise schedule (continuous or intermittent). Therefore, the results suggest IT100 as a preferable training schedule rather than the CT for aerobic capacity training since IT100 presented a significantly higher tLim, t@VT2, and t@90%V̇O2peak (∼757, ∼304, and ∼194 s more, respectively), without differing regards to [La-] and RPE. The V̇O2K seemed not to influence tLim and times spent near V̇O2peak in both workout modes.

19.
Biology (Basel) ; 11(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35453705

RESUMEN

Aims: The present study aimed to assess the ability of bioelectrical impedance vector analysis (BIVA) in discriminating fitness levels in futsal players, exploring the association of body composition and bioelectrical parameters with aerobic power. Methods: Forty-eight professional futsal players (age 23.8 ± 5.3 years) were involved in a cross-sectional study during their pre-season phase. Fat mass (FM) and muscle mass were determined by dual-energy X-ray absorptiometry. VO2max was obtained by indirect calorimetry through a graded exercise test performed on a treadmill. Bioelectrical resistance (R), reactance (Xc), and phase angle (PhA) were directly measured using a foot-to-hand bioimpedance technology at a 50 kHz frequency. Bioelectric R and Xc were standardized for the participants' height and used to plot the bioimpedance vector in the R-Xc graph according to the BIVA approach. Results: The participants divided into groups of VO2max limited by tertiles showed significant differences in mean vector position in the R-Xc graph (p < 0.001), where a higher VO2max resulted in a longer vector and upper positioning. FM, muscle mass, and PhA differed (p < 0.01) among the athletes grouped by tertiles of VO2max, where athletes with a greater aerobic power showed a lower percentage of FM and a higher percentage of muscle mass and PhA. FM and PhA were associated with VO2max (FM: r = −0.658, p < 0.001; PhA: r = 0.493, p < 0.001). These relationships remained significant after adjusting for age and body mass (FM: ß = −0.335, p = 0.046; PhA: ß = 0.351, p = 0.003). Conclusions: Bioelectrical impedance vectors positioned on the lower pole of the R-Xc graph identified futsal players with a lower VO2max, while longer vectors corresponded to a greater aerobic power. Additionally, PhA, that describes the vector direction, was positively associated with VO2max, while a higher FM negatively affected VO2max in the futsal players. BIVA and PhA evaluation may represent a valid support for screening the aerobic fitness level in professional futsal players, when more sophisticated assessment methods are not available.

20.
Artículo en Inglés | MEDLINE | ID: mdl-33430166

RESUMEN

We aimed to compare the velocity, physiological responses, and stroke mechanics between the lactate parameters determined in an incremental step test (IST) and maximal lactate steady state (MLSS). Fourteen well-trained male swimmers (16.8 ± 2.8 years) were timed for 400 m and 200 m (T200). Afterwards, a 7 × 200-m front-crawl IST was performed. Swimming velocity, heart rate (HR), blood lactate concentration (BLC), stroke mechanics, and rate of perceived exertion (RPE) were measured throughout the IST and in the 30-min continuous test (CT) bouts for MLSS determination. Swimming velocities at lactate threshold determined with log-log methodology (1.34 ± 0.06 m∙s-1) and Dmax methodology (1.40 ± 0.06 m∙s-1); and also, the velocity at BLC of 4 mmol∙L-1 (1.36 ± 0.07) were not significantly different from MLSSv, however, Bland-Altman analysis showed wide limits of agreement and the concordance correlation coefficient showed poor strength of agreement between the aforementioned parameters which precludes their interchangeable use. Stroke mechanics, HR, RPE, and BLC in MLSSv were not significantly different from the fourth repetition of IST (85% of T200), which by itself can provide useful support to daily practice of well-trained swimmers. Nevertheless, the determination of MLSSv, based on a CT, remains more accurate for exercise evaluation and prescription.


Asunto(s)
Prueba de Esfuerzo , Natación , Frecuencia Cardíaca , Ácido Láctico , Masculino , Fenómenos Físicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA