Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biophys J ; 118(8): 1820-1829, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32191861

RESUMEN

We report the use of pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) to measure the activities of two different biosensor probes simultaneously in single living cells. Many genetically encoded biosensors rely on the measurement of Förster resonance energy transfer (FRET) to detect changes in biosensor conformation that accompany the targeted cell signaling event. One of the most robust ways of quantifying FRET is to measure changes in the fluorescence lifetime of the donor fluorophore using FLIM. The study of complex signaling networks in living cells demands the ability to track more than one of these cellular events at the same time. Here, we demonstrate how PIE-FLIM can separate and quantify the signals from different FRET-based biosensors to simultaneously measure changes in the activity of two cell signaling pathways in the same living cells in tissues. The imaging system described here uses selectable laser wavelengths and synchronized detection gating that can be tailored and optimized for each FRET pair. Proof-of-principle studies showing simultaneous measurement of cytosolic calcium and protein kinase A activity are shown, but the PIE-FLIM approach is broadly applicable to other signaling pathways.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Luz , Microscopía Fluorescente
2.
J Biol Chem ; 294(1): 168-181, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30420428

RESUMEN

Alterations in endoplasmic reticulum (ER) calcium (Ca2+) levels diminish insulin secretion and reduce ß-cell survival in both major forms of diabetes. The mechanisms responsible for ER Ca2+ loss in ß cells remain incompletely understood. Moreover, a specific role for either ryanodine receptor (RyR) or inositol 1,4,5-triphosphate receptor (IP3R) dysfunction in the pathophysiology of diabetes remains largely untested. To this end, here we applied intracellular and ER Ca2+ imaging techniques in INS-1 ß cells and isolated islets to determine whether diabetogenic stressors alter RyR or IP3R function. Our results revealed that the RyR is sensitive mainly to ER stress-induced dysfunction, whereas cytokine stress specifically alters IP3R activity. Consistent with this observation, pharmacological inhibition of the RyR with ryanodine and inhibition of the IP3R with xestospongin C prevented ER Ca2+ loss under ER and cytokine stress conditions, respectively. However, RyR blockade distinctly prevented ß-cell death, propagation of the unfolded protein response (UPR), and dysfunctional glucose-induced Ca2+ oscillations in tunicamycin-treated INS-1 ß cells and mouse islets and Akita islets. Monitoring at the single-cell level revealed that ER stress acutely increases the frequency of intracellular Ca2+ transients that depend on both ER Ca2+ leakage from the RyR and plasma membrane depolarization. Collectively, these findings indicate that RyR dysfunction shapes ER Ca2+ dynamics in ß cells and regulates both UPR activation and cell death, suggesting that RyR-mediated loss of ER Ca2+ may be an early pathogenic event in diabetes.


Asunto(s)
Señalización del Calcio , Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Línea Celular , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Insulina/patología , Compuestos Macrocíclicos/farmacología , Masculino , Ratones , Ratones Mutantes , Oxazoles/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
3.
J Biol Chem ; 294(16): 6612-6620, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30792307

RESUMEN

In type 1 diabetes, an autoimmune event increases oxidative stress in islet ß cells, giving rise to cellular dysfunction and apoptosis. Lipoxygenases are enzymes that catalyze the oxygenation of polyunsaturated fatty acids that can form lipid metabolites involved in several biological functions, including oxidative stress. 12-Lipoxygenase and 12/15-lipoxygenase are related but distinct enzymes that are expressed in pancreatic islets, but their relative contributions to oxidative stress in these regions are still being elucidated. In this study, we used mice with global genetic deletion of the genes encoding 12-lipoxygenase (arachidonate 12-lipoxygenase, 12S type [Alox12]) or 12/15-lipoxygenase (Alox15) to compare the influence of each gene deletion on ß cell function and survival in response to the ß cell toxin streptozotocin. Alox12-/- mice exhibited greater impairment in glucose tolerance following streptozotocin exposure than WT mice, whereas Alox15-/- mice were protected against dysglycemia. These changes were accompanied by evidence of islet oxidative stress in Alox12-/- mice and reduced oxidative stress in Alox15-/- mice, consistent with alterations in the expression of the antioxidant response enzymes in islets from these mice. Additionally, islets from Alox12-/- mice displayed a compensatory increase in Alox15 gene expression, and treatment of these mice with the 12/15-lipoxygenase inhibitor ML-351 rescued the dysglycemic phenotype. Collectively, these results indicate that Alox12 loss activates a compensatory increase in Alox15 that sensitizes mouse ß cells to oxidative stress.


Asunto(s)
Araquidonato 12-Lipooxigenasa/deficiencia , Araquidonato 15-Lipooxigenasa/biosíntesis , Regulación Enzimológica de la Expresión Génica , Células Secretoras de Insulina/enzimología , Estrés Oxidativo , Animales , Araquidonato 12-Lipooxigenasa/biosíntesis , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Eliminación de Gen , Isoxazoles/farmacología , Ratones , Ratones Noqueados , Naftalenos/farmacología , Estreptozocina/toxicidad
4.
Elife ; 102021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34231467

RESUMEN

The spatial architecture of the islets of Langerhans is hypothesized to facilitate synchronized insulin secretion among ß cells, yet testing this in vivo in the intact pancreas is challenging. Robo ßKO mice, in which the genes Robo1 and Robo2 are deleted selectively in ß cells, provide a unique model of altered islet spatial architecture without loss of ß cell differentiation or islet damage from diabetes. Combining Robo ßKO mice with intravital microscopy, we show here that Robo ßKO islets have reduced synchronized intra-islet Ca2+ oscillations among ß cells in vivo. We provide evidence that this loss is not due to a ß cell-intrinsic function of Robo, mis-expression or mis-localization of Cx36 gap junctions, or changes in islet vascularization or innervation, suggesting that the islet architecture itself is required for synchronized Ca2+ oscillations. These results have implications for understanding structure-function relationships in the islets during progression to diabetes as well as engineering islets from stem cells.


Asunto(s)
Secreción de Insulina/fisiología , Células Secretoras de Insulina/fisiología , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/metabolismo , Animales , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Proteína delta-6 de Union Comunicante , Proteínas Roundabout
6.
Nat Commun ; 11(1): 467, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980626

RESUMEN

The glucagon-like peptide-1 receptor (GLP1R) is a class B G protein-coupled receptor (GPCR) involved in metabolism. Presently, its visualization is limited to genetic manipulation, antibody detection or the use of probes that stimulate receptor activation. Herein, we present LUXendin645, a far-red fluorescent GLP1R antagonistic peptide label. LUXendin645 produces intense and specific membrane labeling throughout live and fixed tissue. GLP1R signaling can additionally be evoked when the receptor is allosterically modulated in the presence of LUXendin645. Using LUXendin645 and LUXendin651, we describe islet, brain and hESC-derived ß-like cell GLP1R expression patterns, reveal higher-order GLP1R organization including membrane nanodomains, and track single receptor subpopulations. We furthermore show that the LUXendin backbone can be optimized for intravital two-photon imaging by installing a red fluorophore. Thus, our super-resolution compatible labeling probes allow visualization of endogenous GLP1R, and provide insight into class B GPCR distribution and dynamics both in vitro and in vivo.


Asunto(s)
Colorantes Fluorescentes , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Línea Celular , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Receptor del Péptido 1 Similar al Glucagón/deficiencia , Receptor del Péptido 1 Similar al Glucagón/genética , Células HEK293 , Células Madre Embrionarias Humanas/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Modelos Moleculares , Estructura Molecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Transducción de Señal , Distribución Tisular
7.
Sci Rep ; 9(1): 8449, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186447

RESUMEN

The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate ß-cell function in vivo. Specifically, we developed ß-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo ß-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study ß-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of ß-cell physiology in the endogenous islet niche.


Asunto(s)
Células Endoteliales/ultraestructura , Células Secretoras de Insulina/ultraestructura , Microscopía Intravital/métodos , Islotes Pancreáticos/ultraestructura , Animales , Técnicas Biosensibles , Señalización del Calcio/genética , Señalización del Calcio/inmunología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Trasplante de Islotes Pancreáticos , Ratones
8.
Physiol Rep ; 7(11): e14101, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31161721

RESUMEN

Islet ß-cell membrane excitability is a well-established regulator of mammalian insulin secretion, and defects in ß-cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration-response relationship to mammalian ß-cells. However, zebrafish islet calcium transients are nor well coupled, with a shallower glucose-dependence of cytoplasmic calcium concentration. We have also generated transgenic zebrafish that conditionally express gain-of-function mutations in ATP-sensitive K+ channels (KATP -GOF) in ß-cells. Following induction, these fish become profoundly diabetic, paralleling features of mammalian diabetes resulting from equivalent mutations. KATP -GOF fish become severely hyperglycemic, with slowed growth, and their islets lose glucose-induced calcium responses. These results indicate that, although lacking tight cell-cell coupling of intracellular Ca2+ , adult zebrafish islets recapitulate similar excitability-driven ß-cell glucose responsiveness to those in mammals, and exhibit profound susceptibility to diabetes as a result of inexcitability. While illustrating evolutionary conservation of islet excitability in lower vertebrates, these results also provide important validation of zebrafish as a suitable animal model in which to identify modulators of islet excitability and diabetes.


Asunto(s)
Calcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/patología , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Animales Modificados Genéticamente , Diabetes Mellitus Experimental/patología , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Potenciales de la Membrana , Edulcorantes/farmacología , Pez Cebra
9.
Diabetes ; 67(8): 1576-1588, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29784660

RESUMEN

Production of reactive oxygen species (ROS) is a key instigator of ß-cell dysfunction in diabetes. The pleiotropic cytokine interleukin 6 (IL-6) has previously been linked to ß-cell autophagy but has not been studied in the context of ß-cell antioxidant response. We used a combination of animal models of diabetes and analysis of cultured human islets and rodent ß-cells to study how IL-6 influences antioxidant response. We show that IL-6 couples autophagy to antioxidant response and thereby reduces ROS in ß-cells and human islets. ß-Cell-specific loss of IL-6 signaling in vivo renders mice more susceptible to oxidative damage and cell death through the selective ß-cell toxins streptozotocin and alloxan. IL-6-driven ROS reduction is associated with an increase in the master antioxidant factor NRF2, which rapidly translocates to the mitochondria to decrease mitochondrial activity and stimulate mitophagy. IL-6 also initiates a robust transient decrease in cellular cAMP levels, likely contributing to the stimulation of mitophagy to mitigate ROS. Our findings suggest that coupling autophagy to antioxidant response in ß-cells leads to stress adaptation that can reduce cellular apoptosis. These findings have implications for ß-cell survival under diabetogenic conditions and present novel targets for therapeutic intervention.


Asunto(s)
Autofagia , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-6/metabolismo , Estrés Oxidativo , Receptores de Interleucina-6/agonistas , Transducción de Señal , Aloxano/toxicidad , Animales , Autofagia/efectos de los fármacos , Biomarcadores/metabolismo , Línea Celular Tumoral , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/patología , Interleucina-6/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Ratas , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Estreptozocina/toxicidad , Bancos de Tejidos , Técnicas de Cultivo de Tejidos
10.
Diabetes ; 66(4): 960-969, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28130310

RESUMEN

Misregulated hormone secretion from the islet of Langerhans is central to the pathophysiology of diabetes. Although insulin plays a key role in glucose regulation, the importance of glucagon is increasingly acknowledged. However, the mechanisms that regulate glucagon secretion from α-cells are still unclear. We used pseudoislets reconstituted from dispersed islet cells to study α-cells with and without various indirect effects from other islet cells. Dispersed islet cells secrete aberrant levels of glucagon and insulin at basal and elevated glucose levels. When cultured, murine islet cells reassociate to form pseudoislets, which recover normal glucose-regulated hormone secretion, and human islet cells follow a similar pattern. We created small (∼40-µm) pseudoislets using all of the islet cells or only some of the cell types, which allowed us to characterize novel aspects of regulated hormone secretion. The recovery of regulated glucagon secretion from α-cells in small pseudoislets depends upon the combined action of paracrine factors, such as insulin and somatostatin, and juxtacrine signals between EphA4/7 on α-cells and ephrins on ß-cells. Although these signals modulate different pathways, both appear to be required for proper inhibition of glucagon secretion in response to glucose. This improved understanding of the modulation of glucagon secretion can provide novel therapeutic routes for the treatment of some individuals with diabetes.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Actinas/metabolismo , Animales , Comunicación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Efrinas/metabolismo , Citometría de Flujo , Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/efectos de los fármacos , Glucosa/farmacología , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Comunicación Paracrina , Receptor EphA4/metabolismo , Receptor EphA7/metabolismo , Transducción de Señal , Somatostatina/metabolismo
11.
PLoS One ; 9(11): e113020, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25401335

RESUMEN

ß-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca(2+)]i), and insulin secretion from ß-cells within intact murine islets. In contrast to previous studies performed on single ß-cells, neither KP nor GLP-1 affect [Ca(2+)]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gßγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gßγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca(2+)]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gßγ-dependent process that stimulates glucose metabolism without altering Ca(2+) activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca(2+).


Asunto(s)
Péptido 1 Similar al Glucagón/farmacología , Insulina/biosíntesis , Kisspeptinas/farmacología , Animales , Glucemia/efectos de los fármacos , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Oxidación-Reducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA