Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 57(10): 6051-6056, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29722989

RESUMEN

The quaternary compound Cu2ZnSnSe4 (CZTSe), as a typical candidate for both solar cells and thermoelectrics, is of great interest for energy harvesting applications. Materials with a high thermoelectric efficiency have a relatively low thermal conductivity, which is closely related to their chemical bonding and lattice dynamics. Therefore, it is essential to investigate the lattice dynamics of materials to further improve their thermoelectric efficiency. Here we report a lattice dynamic study in a cobalt-substituted CZTSe system using temperature-dependent X-ray absorption fine structure spectroscopy (TXAFS). The lattice contribution to the thermal conductivity is dominant, and its reduction is mainly ascribed to the increment of point defects after cobalt substitution. Furthermore, a lattice dynamic study shows that the Einstein temperature of atomic pairs is reduced after cobalt substitution, revealing that increasing local structure disorder and weakened bonding for each of the atomic pairs are achieved, which gives us a new perspective for understanding the behavior of lattice thermal conductivity.

2.
Nat Commun ; 10(1): 2814, 2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249289

RESUMEN

BiCuSeO oxyselenides are promising thermoelectric materials, yet further thermoelectric figure of merit ZT improvement is largely limited by the inferior electrical transport properties. The established literature on these materials shows only one power factor maximum upon carrier concentration optimization, which is typical for most thermoelectric semiconductors. Surprisingly, we found three power factor maxima when doping Bi with Pb. Based on our first-principles calculations, numerical modeling, and experimental investigation, we attribute the three maxima to the Fermi energy optimization, band convergence, and compositing effect due to in situ formed PbSe precipitates. Consequently, three ZT peaks of 0.9, 1.1, and 1.3 at 873 K are achieved for 4, 10, and 14 at.% Pb-doped samples, respectively, revealing the significance of complex electronic structure and multiple roles of Pb in BiCuSeO. The results establish an accurate band structure characterization for BiCuSeO and identify the role of band convergence and nanoprecipitation as the driving mechanism for high ZT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA