Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 18(4): 382-388, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782607

RESUMEN

The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.


Asunto(s)
Simulación de Dinámica Molecular , Enlace de Hidrógeno , Membrana Dobles de Lípidos , Termodinámica
2.
J Chem Inf Model ; 64(3): 621-626, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38276895

RESUMEN

Using a combination of multisite λ-dynamics (MSλD) together with in vitro IC50 assays, we evaluated the polypharmacological potential of a scaffold currently in clinical trials for inhibition of human neutrophil elastase (HNE), targeting cardiopulmonary disease, for efficacious inhibition of Proteinase 3 (PR3), a related neutrophil serine proteinase. The affinities we observe suggest that the dihydropyrimidinone scaffold can serve as a suitable starting point for the establishment of polypharmacologically targeting both enzymes and enhancing the potential for treatments addressing diseases like chronic obstructive pulmonary disease.


Asunto(s)
Polifarmacología , Humanos , Mieloblastina , Proteínas Inhibidoras de Proteinasas Secretoras
3.
PLoS Comput Biol ; 18(12): e1010346, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36516231

RESUMEN

Peripheral membrane proteins (PMPs) include a wide variety of proteins that have in common to bind transiently to the chemically complex interfacial region of membranes through their interfacial binding site (IBS). In contrast to protein-protein or protein-DNA/RNA interfaces, peripheral protein-membrane interfaces are poorly characterized. We collected a dataset of PMP domains representative of the variety of PMP functions: membrane-targeting domains (Annexin, C1, C2, discoidin C2, PH, PX), enzymes (PLA, PLC/D) and lipid-transfer proteins (START). The dataset contains 1328 experimental structures and 1194 AphaFold models. We mapped the amino acid composition and structural patterns of the IBS of each protein in this dataset, and evaluated which were more likely to be found at the IBS compared to the rest of the domains' accessible surface. In agreement with earlier work we find that about two thirds of the PMPs in the dataset have protruding hydrophobes (Leu, Ile, Phe, Tyr, Trp and Met) at their IBS. The three aromatic amino acids Trp, Tyr and Phe are a hallmark of PMPs IBS regardless of whether they protrude on loops or not. This is also the case for lysines but not arginines suggesting that, unlike for Arg-rich membrane-active peptides, the less membrane-disruptive lysine is preferred in PMPs. Another striking observation was the over-representation of glycines at the IBS of PMPs compared to the rest of their surface, possibly procuring IBS loops a much-needed flexibility to insert in-between membrane lipids. The analysis of the 9 superfamilies revealed amino acid distribution patterns in agreement with their known functions and membrane-binding mechanisms. Besides revealing novel amino acids patterns at protein-membrane interfaces, our work contributes a new PMP dataset and an analysis pipeline that can be further built upon for future studies of PMPs properties, or for developing PMPs prediction tools using for example, machine learning approaches.


Asunto(s)
Membrana Celular , Péptidos , Aminoácidos/química , Sitios de Unión , Péptidos/química , Membrana Celular/química
4.
PLoS Comput Biol ; 18(2): e1009871, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180220

RESUMEN

Spider venom GDPD-like phospholipases D (SicTox) have been identified to be one of the major toxins in recluse spider venom. They are divided into two major clades: the α clade and the ß clade. Most α clade toxins present high activity against lipids with choline head groups such as sphingomyelin, while activities in ß clade toxins vary and include preference for substrates containing ethanolamine headgroups (Sicarius terrosus, St_ßIB1). A structural comparison of available structures of phospholipases D (PLDs) reveals a conserved aromatic cage in the α clade. To test the potential influence of the aromatic cage on membrane-lipid specificity we performed molecular dynamics (MD) simulations of the binding of several PLDs onto lipid bilayers containing choline headgroups; two SicTox from the α clade, Loxosceles intermedia αIA1 (Li_αIA) and Loxosceles laeta αIII1 (Ll_αIII1), and one from the ß clade, St_ßIB1. The simulation results reveal that the aromatic cage captures a choline-headgroup and suggest that the cage plays a major role in lipid specificity. We also simulated an engineered St_ßIB1, where we introduced the aromatic cage, and this led to binding with choline-containing lipids. Moreover, a multiple sequence alignment revealed the conservation of the aromatic cage among the α clade PLDs. Here, we confirmed that the i-face of α and ß clade PLDs is involved in their binding to choline and ethanolamine-containing bilayers, respectively. Furthermore, our results suggest a major role in choline lipid recognition of the aromatic cage of the α clade PLDs. The MD simulation results are supported by in vitro liposome binding assay experiments.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Colina , Etanolamina , Fosfolipasa D/metabolismo , Hidrolasas Diéster Fosfóricas/química , Esfingomielinas , Venenos de Araña/química , Venenos de Araña/metabolismo
5.
J Chem Inf Model ; 62(24): 6602-6613, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35343689

RESUMEN

Peripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein-ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein-membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of -8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (-6.6 ± 0.2 kcal/mol). In light of the 2.3-µs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.


Asunto(s)
Membrana Dobles de Lípidos , Fosfolipasas de Tipo C , Entropía , Fosfolipasas de Tipo C/metabolismo , Termodinámica , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Unión Proteica
6.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234717

RESUMEN

Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are a virulence factor in many Gram-positive organisms. The specific activity of the Bacillus thuringiensis PI-PLC is significantly increased by adding phosphatidylcholine (PC) to vesicles composed of the substrate phosphatidylinositol, in part because the inclusion of PC reduces the apparent Kd for the vesicle binding by as much as 1000-fold when comparing PC-rich vesicles to PI vesicles. This review summarizes (i) the experimental work that localized a site on BtPI-PLC where PC is bound as a PC choline cation-Tyr-π complex and (ii) the computational work (including all-atom molecular dynamics simulations) that refined the original complex and found a second persistent PC cation-Tyr-π complex. Both complexes are critical for vesicle binding. These results have led to a model for PC functioning as an allosteric effector of the enzyme by altering the protein dynamics and stabilizing an 'open' active site conformation.


Asunto(s)
Fosfolipasas de Tipo C , Tirosina , Cationes , Colina , Lecitinas , Fosfatidilinositoles/metabolismo , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Fosfolipasas de Tipo C/metabolismo , Factores de Virulencia
7.
PLoS Comput Biol ; 16(12): e1007988, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33362253

RESUMEN

The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 000 members through all kingdoms of life and share the same structural fold. GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence similarity is quite low between members of this superfamily even when substrates are similar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional annotation based on sequence similarity is unreliable and strongly hampered for thousands of GNAT members that remain biochemically uncharacterized. Here we used sequence similarity networks to map the sequence space and propose a new classification for eukaryotic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree, representing the entire GNAT acetyltransferase superfamily. Our results show that protein NATs have evolved more than once on the GNAT acetylation scaffold. We use our classification to predict the function of uncharacterized sequences and verify by in vitro protein assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal sequences, showing that even slight changes on the GNAT fold can lead to change in substrate specificity. In addition to providing a new map of the relationship between eukaryotic acetyltransferases the classification proposed constitutes a tool to improve functional annotation of GNAT acetyltransferases.


Asunto(s)
Acetiltransferasas/clasificación , Anotación de Secuencia Molecular , Filogenia , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Catálisis , Cristalografía por Rayos X , Conformación Proteica , Especificidad por Sustrato
8.
Chem Rev ; 118(18): 8435-8473, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30148347

RESUMEN

Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes from Gram-positive bacteria are secreted virulence factors that aid in downregulating host immunity. These PI-PLCs are minimalist peripheral membrane enzymes with a distorted (ßα)8 TIM barrel fold offering a conserved and stable scaffold for the conserved catalytic amino acids while membrane recognition is achieved mostly through variable loops. Decades of experimental and computational research on these enzymes have revealed the subtle interplay between molecular mechanisms of catalysis and membrane binding, leading to a semiquantitative model for how they find, bind, and cleave their respective substrates on host cell membranes. Variations in sequence and structure of their membrane binding sites may correlate with how enzymes from different Gram-positive bacteria search for their particular targets on the membrane. Detailed molecular characterization of protein-lipid interactions have been aided by cutting-edge methods ranging from 31P field-cycling NMR relaxometry to monitor protein-induced changes in phospholipid dynamics to molecular dynamics simulations to elucidate the roles of electrostatic and cation-π interactions in lipid binding to single molecule fluorescence measurements of dynamic interactions between PI-PLCs and vesicles. This toolkit is readily applicable to other peripheral membrane proteins including orthologues in Gram-negative bacteria and more recently discovered eukaryotic minimalist PI-PLCs.


Asunto(s)
Bacterias/enzimología , Fosfatidilinositol Diacilglicerol-Liasa/química , Fosfatidilinositol Diacilglicerol-Liasa/metabolismo , Fosfatidilinositoles/metabolismo , Regulación Alostérica/fisiología , Biocatálisis , Dominio Catalítico , Membrana Celular/metabolismo , Cinética , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
9.
PLoS Comput Biol ; 14(7): e1006325, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30048443

RESUMEN

With remarkable spatial and temporal specificities, peripheral membrane proteins bind to biological membranes. They do this without compromising solubility of the protein, and their binding sites are not easily distinguished. Prototypical peripheral membrane binding sites display a combination of patches of basic and hydrophobic amino acids that are also frequently present on other protein surfaces. The purpose of this contribution is to identify simple but essential components for membrane binding, through structural criteria that distinguish exposed hydrophobes at membrane binding sites from those that are frequently found on any protein surface. We formulate the concepts of protruding hydrophobes and co-insertability and have analysed more than 300 families of proteins that are classified as peripheral membrane binders. We find that this structural motif strongly discriminates the surfaces of membrane-binding and non-binding proteins. Our model constitutes a novel formulation of a structural pattern for membrane recognition and emphasizes the importance of subtle structural properties of hydrophobic membrane binding sites.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Aminoácidos/análisis , Sitios de Unión , Conjuntos de Datos como Asunto , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Unión Proteica
10.
J Biol Chem ; 292(16): 6821-6837, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28196861

RESUMEN

Nα-Acetyltransferase 60 (Naa60 or NatF) was recently identified as an unconventional N-terminal acetyltransferase (NAT) because it localizes to organelles, in particular the Golgi apparatus, and has a preference for acetylating N termini of the transmembrane proteins. This knowledge challenged the prevailing view of N-terminal acetylation as a co-translational ribosome-associated process and suggested a new mechanistic functioning for the enzymes responsible for this increasingly recognized protein modification. Crystallography studies on Naa60 were unable to resolve the C-terminal tail of Naa60, which is responsible for the organellar localization. Here, we combined modeling, in vitro assays, and cellular localization studies to investigate the secondary structure and membrane interacting capacity of Naa60. The results show that Naa60 is a peripheral membrane protein. Two amphipathic helices within the Naa60 C terminus bind the membrane directly in a parallel position relative to the lipid bilayer via hydrophobic and electrostatic interactions. A peptide corresponding to the C terminus was unstructured in solution and only folded into an α-helical conformation in the presence of liposomes. Computational modeling and cellular mutational analysis revealed the hydrophobic face of two α-helices to be critical for membranous localization. Furthermore, we found a strong and specific binding preference of Naa60 toward membranes containing the phosphatidylinositol PI(4)P, thus possibly explaining the primary residency of Naa60 at the PI(4)P-rich Golgi. In conclusion, we have defined the mode of cytosolic Naa60 anchoring to the Golgi apparatus, most likely occurring post-translationally and specifically facilitating post-translational N-terminal acetylation of many transmembrane proteins.


Asunto(s)
Aparato de Golgi/metabolismo , Acetiltransferasa F N-Terminal/química , Calorimetría , Dicroismo Circular , Cristalografía por Rayos X , Citosol/enzimología , Análisis Mutacional de ADN , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Enlace de Hidrógeno , Membrana Dobles de Lípidos/química , Liposomas/química , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Péptidos/química , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Ribosomas/química , Electricidad Estática , Triptófano/química
11.
Biochim Biophys Acta Biomembr ; 1860(2): 458-466, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29132840

RESUMEN

Proteinase 3 (PR3) is a neutrophil serine protease present in cytoplasmic granules but also expressed at the neutrophil surface where it mediates proinflammatory effects. Studies of the underlying molecular mechanisms have been hampered by the lack of inhibitors of the PR3 membrane anchorage. Indeed while there exist inhibitors of the catalytic activity of PR3, its membrane interfacial binding site (IBS) is distinct from its catalytic site. The IBS has been characterized both by mutagenesis experiments and molecular modeling. Through docking and molecular dynamics simulations we have designed d-peptides targeting the PR3 IBS. We used surface plasmon resonance to evaluate their effect on the binding of PR3 to phospholipid bilayers. Next, we verified their ability of binding to PR3 via fluorescence spectroscopy and isothermal titration calorimetry. The designed peptides did not affect the catalytic activity of PR3. A few peptides bound to PR3 hydrophobic pockets and inhibited PR3 binding to lipids. While the (KFF)3K d-peptide inconveniently showed a significant affinity for the lipids, another d-peptide (SAKEAFFKLLAS) did not and it inhibited the PR3-membrane binding site with IC50 of about 40µM. Our work puts forward d-peptides as promising inhibitors of peripheral protein-membrane interactions, which remain high-hanging fruits in drug design.


Asunto(s)
Membrana Celular/metabolismo , Mieloblastina/metabolismo , Neutrófilos/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Calorimetría/métodos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mieloblastina/química , Péptidos/química , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Resonancia por Plasmón de Superficie
12.
J Biol Chem ; 291(20): 10476-89, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26961880

RESUMEN

Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Mieloblastina/metabolismo , Fosfatidilserinas/metabolismo , Animales , Apoptosis , Línea Celular , Granulomatosis con Poliangitis/enzimología , Granulomatosis con Poliangitis/etiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Mieloblastina/química , Neutrófilos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Ratas , Estallido Respiratorio
13.
Biochim Biophys Acta Biomembr ; 1859(7): 1200-1210, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28372945

RESUMEN

The human phospholipid scramblase 1 (SCR) distributes lipids non-selectively between the cellular membrane leaflets. SCR has long been thought to be mostly localized in the cytoplasm (amino acids 1-287) and anchored to the membrane via the insertion of a 19 amino acid long transmembrane C-terminal helix (CTH, 288-306), which further extends to the exoplasmic side with a 12 amino acid long tail (307-318). Little is known about the structure of this protein, but recent experimental data on two CTH peptides (288-306 and 288-318) show that they insert through phospholipid bilayers and that the presence of cholesterol improves their affinity for lipid vesicles. Yet the sequence of the CTH (288KMKAVMIGACFLIDFMFFE306) contains an aspartic acid (D301), which is not exactly a prototypical amino acid for single-pass transmembrane helices. In this study, we investigate how the polar aspartate residue is accommodated in lipid bilayers containing POPC with and without cholesterol, using all-atom molecular dynamics simulations. We identify two cholesterol-binding sites: (i) A291, F298 and L299 and (ii) L299, F302 and E306 and suggest that cholesterol plays a role in stabilizing the helix in a transmembrane position. We suggest that the presence of the aspartate could be functionally relevant for the scramblase protein activity.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de Transferencia de Fosfolípidos/química , Secuencia de Aminoácidos , Membrana Celular/química , Humanos , Simulación de Dinámica Molecular
14.
Hum Mol Genet ; 24(7): 1956-76, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25489052

RESUMEN

The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Proteínas/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino , Mutación , Linaje , Proteínas/química , Proteínas/genética
15.
PLoS Comput Biol ; 12(3): e1004834, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27015412

RESUMEN

The conservation of the intrinsic dynamics of proteins emerges as we attempt to understand the relationship between sequence, structure and functional conservation. We characterise the conservation of such dynamics in a case where the structure is conserved but function differs greatly. The triosephosphate isomerase barrel fold (TBF), renowned for its 8 ß-strand-α-helix repeats that close to form a barrel, is one of the most diverse and abundant folds found in known protein structures. Proteins with this fold have diverse enzymatic functions spanning five of six Enzyme Commission classes, and we have picked five different superfamily candidates for our analysis using elastic network models. We find that the overall shape is a large determinant in the similarity of the intrinsic dynamics, regardless of function. In particular, the ß-barrel core is highly rigid, while the α-helices that flank the ß-strands have greater relative mobility, allowing for the many possibilities for placement of catalytic residues. We find that these elements correlate with each other via the loops that link them, as opposed to being directly correlated. We are also able to analyse the types of motions encoded by the normal mode vectors of the α-helices. We suggest that the global conservation of the intrinsic dynamics in the TBF contributes greatly to its success as an enzymatic scaffold both through evolution and enzyme design.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Análisis de Secuencia de Proteína/métodos , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/ultraestructura , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Catálisis , Simulación por Computador , Secuencia Conservada , Activación Enzimática , Datos de Secuencia Molecular , Unión Proteica , Relación Estructura-Actividad
16.
Biophys J ; 110(6): 1367-78, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028646

RESUMEN

Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) is a secreted virulence factor that binds specifically to phosphatidylcholine (PC) bilayers containing negatively charged phospholipids. BtPI-PLC carries a negative net charge and its interfacial binding site has no obvious cluster of basic residues. Continuum electrostatic calculations show that, as expected, nonspecific electrostatic interactions between BtPI-PLC and membranes vary as a function of the fraction of anionic lipids present in the bilayers. Yet they are strikingly weak, with a calculated ΔGel below 1 kcal/mol, largely due to a single lysine (K44). When K44 is mutated to alanine, the equilibrium dissociation constant for small unilamellar vesicles increases more than 50 times (∼2.4 kcal/mol), suggesting that interactions between K44 and lipids are not merely electrostatic. Comparisons of molecular-dynamics simulations performed using different lipid compositions reveal that the bilayer composition does not affect either hydrogen bonds or hydrophobic contacts between the protein interfacial binding site and bilayers. However, the occupancies of cation-π interactions between PC choline headgroups and protein tyrosines vary as a function of PC content. The overall contribution of basic residues to binding affinity is also context dependent and cannot be approximated by a rule-of-thumb value because these residues can contribute to both nonspecific electrostatic and short-range protein-lipid interactions. Additionally, statistics on the distribution of basic amino acids in a data set of membrane-binding domains reveal that weak electrostatics, as observed for BtPI-PLC, might be a less unusual mechanism for peripheral membrane binding than is generally thought.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Electricidad Estática , Aminoácidos/química , Bacillus thuringiensis/metabolismo , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Lípidos/química , Simulación de Dinámica Molecular , Fosfatidilgliceroles/química , Fosfoinositido Fosfolipasa C/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Termodinámica
17.
Biochim Biophys Acta ; 1850(5): 911-922, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25267310

RESUMEN

BACKGROUND: Elastic network models (ENMs) are based on the simple idea that a protein can be described as a set of particles connected by springs, which can then be used to describe its intrinsic flexibility using, for example, normal mode analysis. Since the introduction of the first ENM by Monique Tirion in 1996, several variants using coarser protein models have been proposed and their reliability for the description of protein intrinsic dynamics has been widely demonstrated. Lately an increasing number of studies have focused on the meaning of slow dynamics for protein function and its potential conservation through evolution. This leads naturally to comparisons of the intrinsic dynamics of multiple protein structures with varying levels of similarity. SCOPE OF REVIEW: We describe computational strategies for calculating and comparing intrinsic dynamics of multiple proteins using elastic network models, as well as a selection of examples from the recent literature. MAJOR CONCLUSIONS: The increasing interest for comparing dynamics across protein structures with various levels of similarity, has led to the establishment and validation of reliable computational strategies using ENMs. Comparing dynamics has been shown to be a viable way for gaining greater understanding for the mechanisms employed by proteins for their function. Choices of ENM parameters, structure alignment or similarity measures will likely influence the interpretation of the comparative analysis of protein motion. GENERAL SIGNIFICANCE: Understanding the relation between protein function and dynamics is relevant to the fundamental understanding of protein structure-dynamics-function relationship. This article is part of a Special Issue entitled Recent developments of molecular dynamics.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Cinética , Movimiento (Física) , Conformación Proteica , Pliegue de Proteína , Desplegamiento Proteico , Relación Estructura-Actividad , Termodinámica
18.
Biochemistry ; 54(37): 5696-711, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26333120

RESUMEN

The C2A domain of synaptotagmin 7 (Syt7) is a Ca(2+) and membrane binding module that docks and inserts into cellular membranes in response to elevated intracellular Ca(2+) concentrations. Like other C2 domains, Syt7 C2A binds Ca(2+) and membranes primarily through three loop regions; however, it docks at Ca(2+) concentrations much lower than those required for other Syt C2A domains. To probe structural components of its unusually strong membrane docking, we conducted atomistic molecular dynamics simulations of Syt7 C2A under three conditions: in aqueous solution, in the proximity of a lipid bilayer membrane, and embedded in the membrane. The simulations of membrane-free protein indicate that Syt7 C2A likely binds three Ca(2+) ions in aqueous solution, consistent with prior experimental reports. Upon membrane docking, the outermost Ca(2+) ion interacts directly with lipid headgroups, while the other two Ca(2+) ions remain chelated by the protein. The membrane-bound domain was observed to exhibit large-amplitude swinging motions relative to the membrane surface, varying by up to 70° between a more parallel and a more perpendicular orientation, both during and after insertion of the Ca(2+) binding loops into the membrane. The computed orientation of the membrane-bound protein correlates well with experimental electron paramagnetic resonance measurements presented in the preceding paper ( DOI: 10.1021/acs.biochem.5b00421 ). In particular, the strictly conserved residue Phe229 inserted stably ∼4 Å below the average depth of lipid phosphate groups, providing critical hydrophobic interactions anchoring the domain in the membrane. Overall, the position and orientation of Syt7 C2A with respect to the membrane are consistent with experiments.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Sinaptotagminas/química , Calcio/química , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática
19.
Biochim Biophys Acta ; 1838(12): 3191-202, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25218402

RESUMEN

Neutrophil serine proteases Proteinase 3 (PR3) and human neutrophil elastase (HNE) are homologous antibiotic serine proteases of the polymorphonuclear neutrophils. Despite sharing a 56% sequence identity they have been shown to have different functions and localizations in the neutrophils. In particular, and in contrast to HNE, PR3 has been detected at the outer leaflet of the plasma membrane and its membrane expression is a risk factor in a number of chronic inflammatory diseases. Although a plethora of studies performed in various cell-based assays have been reported, the mechanism by which PR3, and possibly HNE bind to simple membrane models remains unclear. We used surface plasmon resonance (SPR) experiments to measure and compare the affinity of PR3 and HNE for large unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We also conducted 500-nanosecond long molecular dynamics simulations of each enzyme at the surface of a POPC bilayer to map the interactions between proteins and lipids and rationalize the difference in affinity observed in the SPR experiment. We find that PR3 binds strongly to POPC large unilamellar vesicles (Kd=9.2×10(-7)M) thanks to the insertion of three phenylalanines, one tryptophan and one leucine beyond the phosphate groups of the POPC lipids. HNE binds in a significantly weaker manner (Kd>10(-5)M) making mostly electrostatic interactions via lysines and arginines and inserting only one leucine between the hydrophobic lipid tails. Our results support the early reports that PR3, unlike HNE, is able to directly and strongly anchor directly to the neutrophil membrane.

20.
J Am Chem Soc ; 137(1): 14-7, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25517221

RESUMEN

Bacillus thuringiensis secretes the virulence factor phosphatidylinositol-specific phospholipase C (BtPI-PLC), which specifically binds to phosphatidylcholine (PC) and cleaves GPI-anchored proteins off eukaryotic plasma membranes. To elucidate how BtPI-PLC searches for GPI-anchored proteins on the membrane surface, we measured residence times of single fluorescently labeled proteins on PC-rich small unilamellar vesicles (SUVs). BtPI-PLC interactions with the SUV surface are transient with a lifetime of 379 ± 49 ms. These data also suggest that BtPI-PLC does not directly sense curvature, but rather prefers to bind to the numerous lipid packing defects in SUVs. Despite this preference for defects, all-atom molecular dynamics simulations of BtPI-PLC interacting with PC-rich bilayers show that the protein is shallowly anchored with the deepest insertions ∼18 Å above the bilayer center. Membrane partitioning is mediated, on average, by 41 hydrophobic, 8 hydrogen-bonding, and 2 cation-π (between PC choline headgroups and Tyr residues) transient interactions with phospholipids. These results lead to a quantitative model for BtPI-PLC interactions with cell membranes where protein binding is mediated by lipid packing defects, possibly near GPI-anchored proteins, and the protein diffuses on the membrane for ∼100-380 ms, during which time it may cleave ∼10 GPI-anchored proteins before dissociating. This combination of short two-dimensional scoots followed by three-dimensional hops may be an efficient search strategy on two-dimensional surfaces with obstacles.


Asunto(s)
Bacillus thuringiensis/enzimología , Fosfatidilcolinas/metabolismo , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA