Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 13(8): e1006942, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28806777

RESUMEN

Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAßGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments.


Asunto(s)
Senescencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Marcadores Genéticos , Células HCT116 , Humanos , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
2.
Neoplasia ; 17(9): 704-715, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26476078

RESUMEN

Cellular senescence is a barrier to tumorigenesis in normal cells, and tumor cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required. Here we report a machine learning-based in silico screen to identify potential senescence agonists. We built profiles of differentially affected biological process networks from expression data obtained under induced telomere dysfunction conditions in colorectal cancer cells and matched these to a panel of 17 protein targets with confirmatory screening data in PubChem. We trained a neural network using 3517 compounds identified as active or inactive against these targets. The resulting classification model was used to screen a virtual library of ~2M lead-like compounds. One hundred and forty-seven virtual hits were acquired for validation in growth inhibition and senescence-associated ß-galactosidase assays. Among the found hits, a benzimidazolone compound, CB-20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and selectively induced senescence-associated ß-galactosidase activity in the entire treated cell population without cytotoxicity or apoptosis induction. Growth suppression was mediated by G1 blockade involving increased p21 expression and suppressed cyclin B1, CDK1, and CDC25C. In addition, the compound inhibited growth of multicellular spheroids and caused severe retardation of population kinetics in long-term treatments. Preliminary structure-activity and structure clustering analyses are reported, and expression analysis of CB-20903630 against other cell cycle suppressor compounds suggested a PI3K/AKT-inhibitor-like profile in normal cells, with different pathways affected in cancer cells.


Asunto(s)
Bencimidazoles/administración & dosificación , Senescencia Celular/efectos de los fármacos , Fase G1/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Redes Neurales de la Computación , Interfaz Usuario-Computador , Bencimidazoles/metabolismo , Senescencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Fase G1/fisiología , Redes Reguladoras de Genes/fisiología , Células HCT116 , Humanos
3.
Neoplasia ; 16(7): 606-15, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25065939

RESUMEN

We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs), islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Islas de CpG , Metilación de ADN , Leucemia de Células T/genética , Leucemia de Células T/patología , Linfocitos T/metabolismo , Células Cultivadas , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Leucemia de Células T/diagnóstico , Reproducibilidad de los Resultados , Linfocitos T/patología
4.
Crit Rev Oncog ; 18(4): 373-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23614622

RESUMEN

Cellular senescence has attracted renewed interest in recent years in light of the realization that cancer cells are susceptible to senescence-like responses to stress including exposure to chemotherapeutic agents. Therefore, senescence is viewed as a potentially important target in cancer therapy. However, translation of senescence therapeutics will rely on identifying appropriate marker panels for assessing senescence responses in vivo. Although some core pathways governing senescence induction have been clearly identified, the full set of gene targets involved in its establishment and maintenance are not defined and their complex interactions are poorly understood. This view is reinforced by recently discovered roles of microRNA (miRNA) in senescence regulation and induction. Senescence involves coordination of diverse cellular processes ranging from telomere homeostasis and DNA damage to chromatin modifications, inflammatory signaling, and metabolic and cytoskeletal changes. Thus, from a target discovery perspective a "senectome" view is appropriate. miRNAs are well placed to act as distributed senectome control elements, fine-tuning regulation of multiple processes. Here, we examine the complex interactions among several of these subprocesses and subsequently consider senescence-associated miRNAs (SA-miRNAs) as distributed controllers of senectome regulation. Finally, we examine their potential as clinical biomarkers to accelerate development of senescence therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Senescencia Celular/genética , MicroARNs/genética , Neoplasias/genética , Animales , Humanos , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA