Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(1): 29-40, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29242539

RESUMEN

Although deletion of certain autophagy-related genes has been associated with defects in hematopoiesis, it remains unclear whether hyperactivated mitophagy affects the maintenance and differentiation of hematopoietic stem cells (HSCs) and committed progenitor cells. Here we report that targeted deletion of the gene encoding the AAA+-ATPase Atad3a hyperactivated mitophagy in mouse hematopoietic cells. Affected mice showed reduced survival, severely decreased bone-marrow cellularity, erythroid anemia and B cell lymphopenia. Those phenotypes were associated with skewed differentiation of stem and progenitor cells and an enlarged HSC pool. Mechanistically, Atad3a interacted with the mitochondrial channel components Tom40 and Tim23 and served as a bridging factor to facilitate appropriate transportation and processing of the mitophagy protein Pink1. Loss of Atad3a caused accumulation of Pink1 and activated mitophagy. Notably, deletion of Pink1 in Atad3a-deficient mice significantly 'rescued' the mitophagy defect, which resulted in restoration of the progenitor and HSC pools. Our data indicate that Atad3a suppresses Pink1-dependent mitophagy and thereby serves a key role in hematopoietic homeostasis.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Proteínas Mitocondriales/metabolismo , Mitofagia , Proteínas Quinasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Quinasas/genética
2.
Mol Cell ; 80(2): 263-278.e7, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33022274

RESUMEN

Cancer metastasis accounts for the major cause of cancer-related deaths. How disseminated cancer cells cope with hostile microenvironments in secondary site for full-blown metastasis is largely unknown. Here, we show that AMPK (AMP-activated protein kinase), activated in mouse metastasis models, drives pyruvate dehydrogenase complex (PDHc) activation to maintain TCA cycle (tricarboxylic acid cycle) and promotes cancer metastasis by adapting cancer cells to metabolic and oxidative stresses. This AMPK-PDHc axis is activated in advanced breast cancer and predicts poor metastasis-free survival. Mechanistically, AMPK localizes in the mitochondrial matrix and phosphorylates the catalytic alpha subunit of PDHc (PDHA) on two residues S295 and S314, which activates the enzymatic activity of PDHc and alleviates an inhibitory phosphorylation by PDHKs, respectively. Importantly, these phosphorylation events mediate PDHc function in cancer metastasis. Our study reveals that AMPK-mediated PDHA phosphorylation drives PDHc activation and TCA cycle to empower cancer cells adaptation to metastatic microenvironments for metastasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Ciclo del Ácido Cítrico , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular , Activación Enzimática , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Fosforilación , Fosfoserina/metabolismo , Transducción de Señal , Estrés Fisiológico , Análisis de Supervivencia
3.
Semin Cancer Biol ; 106-107: 28-42, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197809

RESUMEN

It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.

4.
Mol Cell ; 64(4): 803-814, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27818144

RESUMEN

Mitochondrial p53 is involved in apoptosis and tumor suppression. However, its regulation is not well studied. Here, we show that TRAF6 E3 ligase is a crucial factor to restrict mitochondrial translocation of p53 and spontaneous apoptosis by promoting K63-linked ubiquitination of p53 at K24 in cytosol, and such ubiquitination limits the interaction between p53 and MCL-1/BAK. Genotoxic stress reduces this ubiquitination in cytosol by S13/T330 phosphorylation-dependent translocation of TRAF6 from cytosol to nucleus, where TRAF6 also facilitates the K63-linked ubiquitination of nuclear p53 and its transactivation by recruiting p300 for p53 acetylation. Functionally, K63-linked ubiquitination of p53 compromised p53-mediated apoptosis and tumor suppression. Colorectal cancer samples with WT p53 reveal that TRAF6 overexpression negatively correlates with apoptosis and predicts poor response to chemotherapy and radiotherapy. Together, our study identifies TRAF6 as a critical gatekeeper to restrict p53 mitochondrial translocation, and such mechanism may contribute to tumor development and drug resistance.


Asunto(s)
Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Mitocondrias/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/uso terapéutico , Apoptosis/genética , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Citosol/efectos de los fármacos , Citosol/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisina/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Trasplante de Neoplasias , Transporte de Proteínas , Transducción de Señal , Sulfonamidas/farmacología , Análisis de Supervivencia , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
5.
Mol Cell ; 57(6): 1022-1033, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25728766

RESUMEN

LKB1 is activated by forming a heterotrimeric complex with STRAD and MO25. Recent studies suggest that LKB1 has pro-oncogenic functions, besides acting as a tumor suppressor. How the LKB1 activity is maintained and how LKB1 regulates cancer development are largely unclear. Here we show that K63-linked LKB1 polyubiquitination by Skp2-SCF ubiquitin ligase is critical for LKB1 activation by maintaining LKB1-STRAD-MO25 complex integrity. We further demonstrate that oncogenic Ras acts upstream of Skp2 to promote LKB1 polyubiquitination by activating Skp2-SCF ubiquitin ligase. Moreover, Skp2-mediated LKB1 polyubiquitination is required for energy-stress-induced cell survival. We also detected overexpression of Skp2 and LKB1 in late-stage hepatocellular carcinoma (HCC), and their overexpression predicts poor survival outcomes. Finally, we show that Skp2-mediated LKB1 polyubiquitination is important for HCC tumor growth in vivo. Our study provides new insights into the upstream regulation of LKB1 activation and suggests a potential target, the Ras/Skp2/LKB1 axis, for cancer therapy.


Asunto(s)
Neoplasias Hepáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Anciano , Animales , Proteínas de Unión al Calcio/metabolismo , Supervivencia Celular , Femenino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones Desnudos , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/genética , Estudios Retrospectivos , Proteínas Quinasas Asociadas a Fase-S/genética , Estrés Fisiológico , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/genética , Proteínas ras/metabolismo
6.
Mol Cell ; 58(6): 989-1000, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26051179

RESUMEN

The regulation of RagA(GTP) is important for amino-acid-induced mTORC1 activation. Although GATOR1 complex has been identified as a negative regulator for mTORC1 by hydrolyzing RagA(GTP), how GATOR1 is recruited to RagA to attenuate mTORC1 signaling remains unclear. Moreover, how mTORC1 signaling is terminated upon amino acid stimulation is also unknown. We show that the recruitment of GATOR1 to RagA is induced by amino acids in an mTORC1-dependent manner. Skp2 E3 ligase drives K63-linked ubiquitination of RagA, which facilitates GATOR1 recruitment and RagA(GTP) hydrolysis, thereby providing a negative feedback loop to attenuate mTORC1 lysosomal recruitment and prevent mTORC1 hyperactivation. We further demonstrate that Skp2 promotes autophagy but inhibits cell size and cilia growth through RagA ubiquitination and mTORC1 inhibition. We thereby propose a negative feedback whereby Skp2-mediated RagA ubiquitination recruits GATOR1 to restrict mTORC1 signaling upon sustained amino acid stimulation, which serves a critical mechanism to maintain proper cellular functions.


Asunto(s)
Aminoácidos/farmacología , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/genética , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Immunoblotting , Lisina/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Microscopía Confocal , Modelos Biológicos , Células 3T3 NIH , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Proteínas Quinasas Asociadas a Fase-S/genética , Ubiquitinación/efectos de los fármacos
7.
Mol Cell ; 46(3): 351-61, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22464731

RESUMEN

The Mre11/Rad50/NBS1 (MRN) complex is thought to be a critical sensor that detects damaged DNA and recruits ATM to DNA foci for activation. However, it remains to be established how the MRN complex regulates ATM recruitment to the DNA foci during DNA double-strand breaks (DSBs). Here we show that Skp2 E3 ligase is a key component for the MRN complex-mediated ATM activation in response to DSBs. Skp2 interacts with NBS1 and triggers K63-linked ubiquitination of NBS1 upon DSBs, which is critical for the interaction of NBS1 with ATM, thereby facilitating ATM recruitment to the DNA foci for activation. Finally, we show that Skp2 deficiency exhibits a defect in homologous recombination (HR) repair, thereby increasing IR sensitivity. Our results provide molecular insights into how Skp2 and the MRN complex coordinate to activate ATM, and identify Skp2-mediatetd NBS1 ubiquitination as a vital event for ATM activation in response to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Reparación del ADN por Recombinación , Proteínas Quinasas Asociadas a Fase-S/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular Tumoral , Daño del ADN , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Genéticos , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitinación
8.
PLoS Comput Biol ; 11(1): e1004021, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569504

RESUMEN

The Grb2-associated binding protein 1 (GAB1) integrates signals from different signaling pathways and is over-expressed in many cancers, therefore representing a new therapeutic target. In the present study, we aim to target the pleckstrin homology (PH) domain of GAB1 for cancer treatment. Using homology models we derived, high-throughput virtual screening of five million compounds resulted in five hits which exhibited strong binding affinities to GAB1 PH domain. Our prediction of ligand binding affinities is also in agreement with the experimental KD values. Furthermore, molecular dynamics studies showed that GAB1 PH domain underwent large conformational changes upon ligand binding. Moreover, these hits inhibited the phosphorylation of GAB1 and demonstrated potent, tumor-specific cytotoxicity against MDA-MB-231 and T47D breast cancer cell lines. This effort represents the discovery of first-in-class GAB1 PH domain inhibitors with potential for targeted breast cancer therapy and provides novel insights into structure-based approaches to targeting this protein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/química , Antineoplásicos/farmacología , Proteínas Sanguíneas/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/química , Proteínas Sanguíneas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Femenino , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Fosfoproteínas/química , Unión Proteica , Alineación de Secuencia , Termodinámica
9.
Biomedicines ; 12(10)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39457533

RESUMEN

Background: Busulfan is an FDA-approved alkylating drug used in the chemotherapy of advanced acute myeloid leukemia. The precise mechanisms by which Busulfan kills spermatogonia stem cells (SSCs) are not yet completely understood. Methods: Using a murine model, we evaluated Busulfan-induced apoptosis and DNA damage signaling between testis and ovary tissues. We executed RT-qPCR, analyzed single-nuclei RNA sequencing data and performed in situ hybridization for the localization of the gene expression in the tissues. Results: The results indicate that, in contrast to female germ cells, haploid male germ cells undergo significant apoptosis following Busulfan chemotherapy. Moreover, a gene enrichment analysis revealed that reactive oxygen species may activate the inflammatory response in part through the TNF-α/NF-κB signaling pathway. Interestingly, in the testis, the mRNA levels of TNF-α and TAF7 (TATA box-binding protein-associated factor 7) are downregulated, and testosterone levels suppressed. Mechanistically, the promoter of TNF-α has a conserved motif for binding TAF7, which is necessary for its transcriptional activation and may require further in-depth study. We next analyzed the tumorigenic function of TAF7 and revealed that it is highly overexpressed in several types of human cancers, particularly testicular germ cell tumors, and associated with poor patient survival. Therefore, we executed in situ hybridization and single-nuclei RNA sequencing, finding that less TAF7 mRNA is present in SSCs after chemotherapy. Conclusions: Thus, our data indicate a possible function of TAF7 in the regulation of SSCs and spermatogenesis following downregulation by Busulfan. These findings may account for the therapeutic effects of Busulfan and underlie its potential impact on cancer chemotherapy prognosis.

10.
Biology (Basel) ; 13(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056676

RESUMEN

Triple-negative breast cancer (TNBC) cells are often resistant to FAS (CD95)-mediated apoptosis, but the underlying molecular mechanism(s) is not fully understood yet. Notably, the expression of the type II transmembrane protein, CD74, is correlated with chemotherapy-resistant and more invasive forms of cancers via unknown mechanisms. Here, we analyzed gene expression pattern of cancer patients and/or patient-derived xenograft (PDX) models and found that mRNA and protein levels of CD74 are highly expressed in TNBC and correlated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) properties. Mechanistically, we found that AKT activation is likely critical for maintaining CD74 expression and protein stability to favor its oncogenic functions. Physiologically, epidermal growth factor (EGF) along with CD74 could activate AKT signaling, likely through binding of phosphorylated AKT (S473) to CD74, whereas inhibition of AKT could impair stability of CD74. We also revealed that CD74 binds to FAS and interferes with the intrinsic signaling of FAS-mediated apoptosis. As such, selective targeting of the CD74/FAS complex using the AKT inhibitor along with the CD74-derived peptide could synergistically restore and activate FAS-mediated apoptosis. Therefore, our approach of mobilizing apoptosis pathways likely provides a rationale for TNBC treatment by targeting the CD74/FAS and CD74-AKT axes.

11.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189140, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909632

RESUMEN

FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Neoplasias , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Animales , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
12.
Cell Chem Biol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39043186

RESUMEN

Lysyl oxidase (LOX) is upregulated in highly stiff aggressive tumors, correlating with metastasis, resistance, and worse survival; however, there are currently no potent, safe, and orally bioavailable small molecule LOX inhibitors to treat these aggressive desmoplastic solid tumors in clinics. Here we discovered bi-thiazole derivatives as potent LOX inhibitors by robust screening of drug-like molecules combined with cell/recombinant protein-based assays. Structure-activity relationship analysis identified a potent lead compound (LXG6403) with ∼3.5-fold specificity for LOX compared to LOXL2 while not inhibiting LOXL1 with a competitive, time- and concentration-dependent irreversible mode of inhibition. LXG6403 shows favorable pharmacokinetic properties, globally changes ECM/collagen architecture, and reduces tumor stiffness. This leads to better drug penetration, inhibits FAK signaling, and induces ROS/DNA damage, G1 arrest, and apoptosis in chemoresistant triple-negative breast cancer (TNBC) cell lines, PDX organoids, and in vivo. Overall, our potent and tolerable bi-thiazole LOX inhibitor enhances chemoresponse in TNBC, the deadliest breast cancer subtype.

13.
Blood ; 118(11): 3107-18, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21803845

RESUMEN

Defective Fas signaling leads to resistance to various anticancer therapies. Presence of potential inhibitors of Fas which could block Fas signaling can explain cancer cells resistance to apoptosis. We identified promyelocytic leukemia protein (PML) as a Fas-interacting protein using mass spectrometry analysis. The function of PML is blocked by its dominant-negative form PML-retinoic acid receptor α (PMLRARα). We found PMLRARα interaction with Fas in acute promyelocytic leukemia (APL)-derived cells and APL primary cells, and PML-Fas complexes in normal tissues. Binding of PMLRARα to Fas was mapped to the B-box domain of PML moiety and death domain of Fas. PMLRARα blockage of Fas apoptosis was demonstrated in U937/PR9 cells, human APL cells and transgenic mouse APL cells, in which PMLRARα recruited c-FLIP(L/S) and excluded procaspase 8 from Fas death signaling complex. PMLRARα expression in mice protected the mice against a lethal dose of agonistic anti-Fas antibody (P < .001) and the protected tissues contained Fas-PMLRARα-cFLIP complexes. Taken together, PMLRARα binds to Fas and blocks Fas-mediated apoptosis in APL by forming an apoptotic inhibitory complex with c-FLIP. The presence of PML-Fas complexes across different tissues implicates that PML functions in apoptosis regulation and tumor suppression are mediated by direct interaction with Fas.


Asunto(s)
Apoptosis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Receptor fas/metabolismo , Animales , Apoptosis/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/fisiología , Células Cultivadas , Regulación hacia Abajo , Femenino , Células HL-60 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/fisiología , Unión Proteica/fisiología , Células U937 , Receptor fas/antagonistas & inhibidores , Receptor fas/genética , Receptor fas/fisiología
14.
Adv Protein Chem Struct Biol ; 135: 179-201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37061331

RESUMEN

The recent findings advance our knowledge for the prevention of the premature activation of the major oncogenic pathways including MYC and the cyclin D-cyclin-dependent kinases 4 and 6 (CDK4/6) axis. D-type cyclins are frequently deregulated in human cancer and promote cell division in part through activation of CDK4/6. Therefore, the activation of the cyclin D-CDK4/6 axis stimulates cell proliferation and cancer progression, which represents a unique therapeutic target. However, we have shown that inhibition of CDK4/6 upregulates protein levels of RB1 and CDK6 for acquisition of drug resistance to CDK4/6 inhibitors. Here, we review new progress in the control of cyclin D-dependent cancer cell cycle and proliferation, along with identification of novel E3 ligase for the stability of cyclin D. Cullin4-RING E3 ligase (CRL4)AMBRA1 complex plays a critical role in regulating D-type cyclins through their protein destabilization to control S phase entry and maintain genomic integrity. We also summarize the strategy for inhibition of the cyclin D-associated kinases CDK4/6 and other potential cell cycle regulators for targeting cancer with altered cyclin D expression. We also uncover the function of CK1ɛ as an effective target to potentiate therapeutic efficacy of CDK4/6 inhibitors. Moreover, as the level of PD-L1 is considered in the severe clinical problem in the patients treated with CDK4 inhibitors, we assume that a therapeutic combination using PD-L1 immunotherapy might lower the development of drug resistance and targeting cyclin D will likely inhibit tumor growth and overcome resistance to cyclin D-associated CDK4/6 inhibitors.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Proteína de Retinoblastoma/metabolismo , Fosforilación , Ciclinas/genética , Ciclina D/metabolismo , Transducción de Señal , Neoplasias/tratamiento farmacológico , Carcinogénesis , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
15.
Neoplasia ; 41: 100904, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148656

RESUMEN

Circadian clock orchestrates the intergenic biochemical, physiological and behavioral changes to form an approximate 24h oscillation through the transcription-translation feedback loop (TTFL). Mechanistically, a heterodimer of transcriptional activator formed by BMAL1 and CLOCK, governs the expression of its transcriptional repressors, CRY, PER and REV-ERBα/ß proteins, thereby controlling more than 50 % of protein encoding genes in human. There is also increasing evidence showing that tumor microenvironment can disrupt specific clock gene functions to facilitate tumorigenesis. Although there is great progress in understanding the molecular mechanisms of the circadian clock, aging and cancer, elucidating their complex relationships among these processes remains challenging. Herein, the optimization of the chronochemotherapy regimen has not been justified yet for treatment of cancer. Here, we discuss the hypothesis of relocalization of chromatin modifiers (RCM) along with function(s) of the circadian rhythm on aging and carcinogenesis. We will also introduce the function of the chromatin remodeling as a new avenue for rejuvenation of competent tissues to combat aging and cancer.


Asunto(s)
Relojes Circadianos , Neoplasias , Humanos , Relojes Circadianos/genética , Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Envejecimiento/genética , Neoplasias/genética
16.
Neoplasia ; 38: 100890, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871351

RESUMEN

SKP2, an F-box protein of the SCF type of the E3 ubiquitin ligase complex, plays an important function in driving tumorigenesis through the destruction of numerous tumor-suppressive proteins. Besides its critical role in cell cycle regulation, proto-oncogenic functions of SKP2 have also been shown in a cell cycle regulation-independent manner. Therefore, uncovering novel physiological upstream regulators of SKP2 signaling pathways would be essential to retard aggressive malignancies. Here, we report that elevation of SKP2 and EP300 transcriptomic expression is a hallmark of castration-resistant prostate cancer. We also found that SKP2 acetylation is likely a critical driven event in castration-resistant prostate cancer cells. Mechanistically, SKP2-acetylation is mediated by the p300 acetyltransferase enzyme for post-translational modification (PTM) event that is induced upon stimulation with dihydrotestosterone (DHT) in prostate cancer cells. Moreover, ectopic expression of acetylation-mimetic K68/71Q mutant of SKP2 in LNCaP cells could confer resistance to androgen withdrawal-induced growth arrest and promotes prostate cancer stem cell (CSC)-like traits including survival, proliferation, stemness formation, lactate production, migration, and invasion. Furthermore, inhibition of p300-mediated SKP2 acetylation or SKP2-mediated p27-degradation by pharmacological inhibition of p300 or SKP2 could attenuate epithelial-mesenchymal transition (EMT) and the proto-oncogenic activities of the SKP2/p300 and androgen receptor (AR) signaling pathways. Therefore, our study identifies the SKP2/p300 axis as a possible molecular mechanism driving castration-resistant prostate cancers, which provides pharmaceutical insight into inactivation of the SKP2/p300 axis for restriction of CSC-like properties, thereby benefiting clinical diagnosis and cancer therapy.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Andrógenos , Transducción de Señal , Procesamiento Proteico-Postraduccional , Línea Celular Tumoral
17.
iScience ; 26(2): 105965, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824274

RESUMEN

Despite the knowledge that protein translation and various metabolic reactions that create and sustain cellular life occur in the cytoplasm, the structural organization within the cytoplasm remains unclear. Recent models indicate that cytoplasm contains viscous fluid and elastic solid phases. We separated these viscous fluid and solid elastic compartments, which we call the cytosol and cytomatrix, respectively. The distinctive composition of the cytomatrix included structural proteins, ribosomes, and metabolome enzymes. High-throughput analysis revealed unique biosynthetic pathways within the cytomatrix. Enrichment of biosynthetic pathways in the cytomatrix indicated the presence of immobilized biocatalysis. Enzymatic immobilization and segregation can surmount spatial impediments, and the local pathway segregation may form cytoplasmic organelles. Protein translation was reprogrammed within the cytomatrix under the restriction of protein synthesis by drug treatment. The cytosol and cytomatrix are an elaborately interconnected network that promotes operational flexibility in healthy cells and the survival of malignant cells.

18.
Sci Transl Med ; 15(725): eadh7668, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38055802

RESUMEN

Targeting angiotensin-converting enzyme 2 (ACE2) represents a promising and effective approach to combat not only the COVID-19 pandemic but also potential future pandemics arising from coronaviruses that depend on ACE2 for infection. Here, we report ubiquitin specific peptidase 2 (USP2) as a host-directed antiviral target; we further describe the development of MS102, an orally available USP2 inhibitor with viable antiviral activity against ACE2-dependent coronaviruses. Mechanistically, USP2 serves as a physiological deubiquitinase of ACE2, and targeted inhibition with specific small-molecule inhibitor ML364 leads to a marked and reversible reduction in ACE2 protein abundance, thereby blocking various ACE2-dependent coronaviruses tested. Using human ACE2 transgenic mouse models, we further demonstrate that ML364 efficiently controls disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as evidenced by reduced viral loads and ameliorated lung inflammation. Furthermore, we improved the in vivo performance of ML364 in terms of both pharmacokinetics and antiviral activity. The resulting lead compound, MS102, holds promise as an oral therapeutic option for treating infections with coronaviruses that are reliant on ACE2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones Transgénicos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Ubiquitina Tiolesterasa
19.
Acta Mater Med ; 1(1): 24-41, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237768

RESUMEN

Neurodegenerative diseases (NDs) are characteristic with progression of neuron degeneration, resulting in dysfunction of cognition and mobility. Many neurodegenerative diseases are because of proteinopathies that results from unusual protein accumulations and aggregations. The aggregation of misfolded proteins like ß-amyloid, α-synuclein, tau, and polyglutamates are hallmarked in Alzheimer's disease (AD), which are undruggable targets, and usually do not respond to conventional small-molecule agents. Therefore, developing novel technology and strategy for reducing the levels of protein aggregates would be critical for treatment of AD. Recently, the emerging proteolysis targeting chimeras (PRPTACs) technology has been significantly considered for artificial and selective degradation of aberrant target proteins. These engineered bifunctional molecules engage target proteins to be degraded by either the cellular degradation machinery in the ubiquitin-proteasome system (UPS) or via the autophagy-lysosome degradation pathway. Although the application of PROTACs technology is preferable than oligonucleotide and antibodies for treatment of NDs, many limitations such as their pharmacokinetic properties, tissue distribution and cell permeabilities, still need to be corrected. Herein, we review the recent advances in PROTACs technology with their limitation for pharmaceutical targeting of aberrant proteins involved in Alzheimer's diseases. We also review therapeutic potential of dysregulated signaling such as PI3K/AKT/mTOR axis for the management of AD.

20.
Acta Mater Med ; 1(1): 42-55, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35233562

RESUMEN

Maintaining neuronal integrity and functions requires precise mechanisms controlling organelle and protein quality. Alzheimer's disease (AD) is characterized by functional defects in the clearance and recycling of intracellular components. As such, neuronal homeostasis involves autophagy, mitophagy, and apoptosis. Compromised activity in these cellular processes may cause pathological phenotypes of AD. Dysfunction of mitochondria is one of the hallmarks of AD. Mitophagy is a critical mitochondria quality control system, and the impaired mitophagy is observed in AD. Myeloid cell leukemia 1 (MCL1), a member of the pro-survival B-cell lymphoma protein 2 (BCL2) family, is a mitochondria-targeted protein that contributes to maintaining mitochondrial integrity. Mcl1 knockout mice display peri-implantation lethality. The studies on conditional Mcl1 knockout mice demonstrate that MCL1 plays a central role in neurogenesis and neuronal survival during brain development. Accumulating evidence reveals the critical role of MCL1 as a regulator of neuronal autophagy, mitophagy, and survival. In this review, we discuss the emerging neuroprotective function of MCL1 and how dysregulation of MCL1 signaling is involved in the pathogenesis of AD. As the pro-survival BCL2 family of proteins are promising targets of pharmacological intervention with BH3 mimetic drugs, we also discuss the promise of MCL1-targeting therapy in AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA