Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(8): e2301449121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346189

RESUMEN

GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.


Asunto(s)
Habénula , Receptores de GABA-B , Animales , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Habénula/metabolismo , Astacoidea/metabolismo , Terminales Presinápticos/metabolismo , Cafeína , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
2.
Mol Psychiatry ; 27(2): 1145-1157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35169262

RESUMEN

Bipolar disorder is a severe and chronic psychiatric disease resulting from a combination of genetic and environmental risk factors. Here, we identified a significant higher mutation rate in a gene encoding the calcium-dependent activator protein for secretion (CADPS) in 132 individuals with bipolar disorder, when compared to 184 unaffected controls or to 21,070 non-psychiatric and non-Finnish European subjects from the Exome Aggregation Consortium. We found that most of these variants resulted either in a lower abundance or a partial impairment in one of the basic functions of CADPS in regulating neuronal exocytosis, synaptic plasticity and vesicular transporter-dependent uptake of catecholamines. Heterozygous mutant mice for Cadps+/- revealed that a decreased level of CADPS leads to manic-like behaviours, changes in BDNF level and a hypersensitivity to stress. This was consistent with more childhood trauma reported in families with mutation in CADPS, and more specifically in mutated individuals. Furthermore, hyperactivity observed in mutant animals was rescued by the mood-stabilizing drug lithium. Overall, our results suggest that dysfunction in calcium-dependent vesicular exocytosis may increase the sensitivity to environmental stressors enhancing the risk of developing bipolar disorder.


Asunto(s)
Trastorno Bipolar , Animales , Trastorno Bipolar/genética , Calcio/metabolismo , Proteínas de Unión al Calcio , Exocitosis , Humanos , Ratones , Mutación/genética , Proteínas del Tejido Nervioso , Plasticidad Neuronal , Proteínas de Transporte Vesicular
3.
J Biol Chem ; 296: 100709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33901490

RESUMEN

Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects-or synaptopathies-are at the basis of many neurological and psychiatric disorders. Collybistin (CB), a brain-specific guanine nucleotide exchange factor, is essential for the formation of γ-aminobutyric acidergic (GABAergic) postsynapses in defined regions of the mammalian forebrain, including the hippocampus and basolateral amygdala. This process depends on a direct interaction of CB with the scaffolding protein gephyrin, which leads to the redistribution of gephyrin into submembranous clusters at nascent inhibitory synapses. Strikingly, synaptic clustering of gephyrin and GABAA type A receptors (GABAARs) in several brain regions, including the cerebral cortex and certain thalamic areas, is unperturbed in CB-deficient mice, indicating that the formation of a substantial subset of inhibitory postsynapses must be controlled by gephyrin-interacting proteins other than CB. Previous studies indicated that the α3 subunit of GABAARs (GABAAR-α3) binds directly and with high affinity to gephyrin. Here, we provide evidence (i) that a homooligomeric GABAAR-α3A343W mutant induces the formation of submembranous gephyrin clusters independently of CB in COS-7 cells, (ii) that gephyrin clustering is unaltered in the neuronal subpopulations endogenously expressing the GABAAR-α3 in CB-deficient brains, and (iii) that exogenous expression of GABAAR-α3 partially rescues impaired gephyrin clustering in CB-deficient hippocampal neurons. Our results identify an important role of GABAAR-α3 in promoting gephyrin-mediated and CB-independent formation of inhibitory postsynapses.


Asunto(s)
Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Animales , Neuronas GABAérgicas/citología , Hipocampo/citología , Proteínas de la Membrana/metabolismo , Ratones
4.
Mol Psychiatry ; 26(6): 1980-1995, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249816

RESUMEN

Kaufman oculocerebrofacial syndrome (KOS) is a severe autosomal recessive disorder characterized by intellectual disability, developmental delays, microcephaly, and characteristic dysmorphisms. Biallelic mutations of UBE3B, encoding for a ubiquitin ligase E3B are causative for KOS. In this report, we characterize neuronal functions of its murine ortholog Ube3b and show that Ube3b regulates dendritic branching in a cell-autonomous manner. Moreover, Ube3b knockout (KO) neurons exhibit increased density and aberrant morphology of dendritic spines, altered synaptic physiology, and changes in hippocampal circuit activity. Dorsal forebrain-specific Ube3b KO animals show impaired spatial learning, altered social interactions, and repetitive behaviors. We further demonstrate that Ube3b ubiquitinates the catalytic γ-subunit of calcineurin, Ppp3cc, the overexpression of which phenocopies Ube3b loss with regard to dendritic spine density. This work provides insights into the molecular pathologies underlying intellectual disability-like phenotypes in a genetically engineered mouse model.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Animales , Calcineurina , Espinas Dendríticas , Anomalías del Ojo , Facies , Discapacidad Intelectual/genética , Deformidades Congénitas de las Extremidades , Ratones , Ratones Noqueados , Microcefalia/genética , Mutación/genética , Sinapsis , Ubiquitina-Proteína Ligasas/genética
5.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681928

RESUMEN

Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavß3/α2δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Regulación hacia Arriba , Proteínas de Transporte Vesicular/metabolismo , Animales , Sitios de Unión , Femenino , Células HEK293 , Humanos , Dominios Proteicos , Ratas , Técnicas del Sistema de Dos Híbridos , Xenopus
6.
J Biol Chem ; 292(4): 1160-1177, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27941024

RESUMEN

The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations.


Asunto(s)
Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Neuronas GABAérgicas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Membranas Sinápticas/metabolismo , Potenciales Sinápticos/fisiología , Animales , Neuronas GABAérgicas/citología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
7.
Nat Chem Biol ; 12(9): 755-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27454932

RESUMEN

Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling.


Asunto(s)
Diglicéridos/metabolismo , Diglicéridos/efectos de la radiación , Procesos Fotoquímicos/efectos de la radiación , Proteína Quinasa C/metabolismo , Proteína Quinasa C/efectos de la radiación , Rayos Ultravioleta , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de la radiación , Diglicéridos/química , Ratones , Fenómenos Ópticos , Proteína Quinasa C/química , Transducción de Señal/efectos de la radiación
8.
J Cell Sci ; 128(4): 638-44, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25609709

RESUMEN

Ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle replenishment to indefatigably encode sound. In neurons, neuroendocrine and immune cells, vesicle replenishment depends on proteins of the mammalian uncoordinated 13 (Munc13, also known as Unc13) and Ca(2+)-dependent activator proteins for secretion (CAPS) families, which prime vesicles for exocytosis. Here, we tested whether Munc13 and CAPS proteins also regulate exocytosis in mouse IHCs by combining immunohistochemistry with auditory systems physiology and IHC patch-clamp recordings of exocytosis in mice lacking Munc13 and CAPS isoforms. Surprisingly, we did not detect Munc13 or CAPS proteins at IHC presynaptic active zones and found normal IHC exocytosis as well as auditory brainstem responses (ABRs) in Munc13 and CAPS deletion mutants. Instead, we show that otoferlin, a C2-domain protein that is crucial for vesicular fusion and replenishment in IHCs, clusters at the plasma membrane of the presynaptic active zone. Electron tomography of otoferlin-deficient IHC synapses revealed a reduction of short tethers holding vesicles at the active zone, which might be a structural correlate of impaired vesicle priming in otoferlin-deficient IHCs. We conclude that IHCs use an unconventional priming machinery that involves otoferlin.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Proteínas de la Membrana/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Tomografía con Microscopio Electrónico , Exocitosis/fisiología , Femenino , Células Ciliadas Auditivas Internas/citología , Audición/genética , Audición/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp
9.
Proc Natl Acad Sci U S A ; 111(36): 13205-10, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157163

RESUMEN

Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos Multiproteicos/metabolismo , Neuritas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral/citología , Hipocampo/citología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Noqueados , Modelos Biológicos , Morfogénesis , Ubiquitina-Proteína Ligasas Nedd4 , Poliubiquitina/metabolismo , Biosíntesis de Proteínas , Ubiquitinación
10.
Proc Natl Acad Sci U S A ; 110(51): 20795-800, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297911

RESUMEN

In many brain regions, gephyrin and GABAA receptor clustering at developing inhibitory synapses depends on the guanine nucleotide exchange factor collybistin (Cb). The vast majority of Cb splice variants contain an autoinhibitory src homology 3 domain, and several synaptic proteins are known to bind to this SH3 domain and to thereby activate gephyrin clustering. However, many functional GABAergic synapses form independently of the known Cb-activating proteins, indicating that additional Cb activators must exist. Here we show that the small Rho-like GTPase TC10 stimulates Cb-dependent gephyrin clustering by binding in its active, GTP-bound state to the pleckstrin homology domain of Cb. Overexpression of a constitutively active TC10 variant in neurons causes an increase in the density of synaptic gephyrin clusters and mean miniature inhibitory postsynaptic current amplitudes, whereas a dominant negative TC10 variant has opposite effects. The enhancement of Cb-induced gephyrin clustering by GTP-TC10 does not depend on the guanine nucleotide exchange activity of Cb but involves an interaction that resembles reported interactions of other small GTPases with their effectors. Our data indicate that GTP-TC10 activates the major src homology 3 domain-containing Cb variants by relieving autoinhibition and thus define an alternative GTPase-driven signaling pathway in the genesis of inhibitory synapses.


Asunto(s)
Proteínas Portadoras/metabolismo , Neuronas GABAérgicas/metabolismo , Guanosina Trifosfato/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Densidad Postsináptica/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Potenciales Sinápticos/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Células COS , Proteínas Portadoras/genética , Chlorocebus aethiops , Neuronas GABAérgicas/citología , Guanosina Trifosfato/genética , Hipocampo/citología , Humanos , Proteínas de la Membrana/genética , Densidad Postsináptica/genética , Estructura Terciaria de Proteína , Ratas , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteínas de Unión al GTP rho/genética
11.
EMBO J ; 30(1): 165-80, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21119615

RESUMEN

Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)-95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι-/- synapses show a reduction in metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at neonatal (∼2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR-LTD at DGKι-/- synapses. These results suggest that DGKι requires PSD-95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR-LTD.


Asunto(s)
Encéfalo/metabolismo , Diacilglicerol Quinasa/análisis , Diacilglicerol Quinasa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Animales , Encéfalo/ultraestructura , Línea Celular , Células Cultivadas , Diacilglicerol Quinasa/genética , Maleato de Dizocilpina/metabolismo , Eliminación de Gen , Expresión Génica , Humanos , Ratones , Neuronas/metabolismo , Neuronas/ultraestructura , Neurotransmisores/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica
12.
iScience ; 27(1): 108679, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38213627

RESUMEN

Synapses, specialized contact sites between neurons, are the fundamental elements of neuronal information transfer. Synaptic plasticity involves changes in synaptic morphology and the number of neurotransmitter receptors, and is thought to underlie learning and memory. However, it is not clear how these structural and functional changes are connected. We utilized time-lapse super-resolution STED microscopy of organotypic hippocampal brain slices and cultured neurons to visualize structural changes of the synaptic nano-organization of the postsynaptic scaffolding protein PSD95, the presynaptic scaffolding protein Bassoon, and the GluA2 subunit of AMPA receptors by chemically induced long-term potentiation (cLTP) at the level of single synapses. We found that the nano-organization of all three proteins increased in complexity and size after cLTP induction. The increase was largely synchronous, peaking at ∼60 min after stimulation. Therefore, both the size and complexity of individual pre- and post-synaptic nanostructures serve as substrates for tuning and determining synaptic strength.

13.
J Cell Biol ; 223(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38032389

RESUMEN

Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.


Asunto(s)
Astrocitos , Permeabilidad de la Membrana Celular , Conexina 43 , Ubiquitina-Proteína Ligasas Nedd4 , Canales de Potasio de Rectificación Interna , Animales , Humanos , Ratones , Conexina 43/genética , Mutación Missense , Proteostasis , Canales de Potasio de Rectificación Interna/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Epilepsia
14.
J Neurosci ; 32(22): 7632-45, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22649242

RESUMEN

Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.


Asunto(s)
Colesterol/biosíntesis , Neuritas/fisiología , Neuronas/citología , Neuronas/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Anticolesterolemiantes , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Colesterol/farmacología , Embrión de Mamíferos , Efrina-A5/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Farnesil Difosfato Farnesil Transferasa/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Hipocampo/citología , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/fisiología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Neuritas/efectos de los fármacos , Neuritas/ultraestructura , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Front Mol Neurosci ; 16: 1115880, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533751

RESUMEN

Advances in genome sequencing technologies have favored the identification of rare de novo mutations linked to neurological disorders in humans. Recently, a de novo autosomal dominant mutation in NACC1 was identified (NM_052876.3: c.892C > T, NP_443108.1; p.Arg298Trp), associated with severe neurological symptoms including intellectual disability, microcephaly, and epilepsy. As NACC1 had never before been associated with neurological diseases, we investigated how this mutation might lead to altered brain function. We examined neurotransmission in autaptic glutamatergic mouse neurons expressing the murine homolog of the human mutant NACC1, i.e., Nacc1-R284W. We observed that expression of Nacc1-R284W impaired glutamatergic neurotransmission in a cell-autonomous manner, likely through a dominant negative mechanism. Furthermore, by screening for Nacc1 interaction targets in the brain, we identified SynGAP1, GluK2A, and several SUMO E3 ligases as novel Nacc1 interaction partners. At a biochemical level, Nacc1-R284W exhibited reduced binding to SynGAP1 and GluK2A, and also showed greatly increased SUMOylation. Ablating the SUMOylation of Nacc1-R284W partially restored its interaction with SynGAP1 but did not restore binding to GluK2A. Overall, these data indicate a role for Nacc1 in regulating glutamatergic neurotransmission, which is substantially impaired by the expression of a disease-associated Nacc1 mutant. This study provides the first functional insights into potential deficits in neuronal function in patients expressing the de novo mutant NACC1 protein.

16.
Front Cell Neurosci ; 17: 1182493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045729

RESUMEN

Synapse formation is critical for the wiring of neural circuits in the developing brain. The synaptic scaffolding protein S-SCAM/MAGI-2 has important roles in the assembly of signaling complexes at post-synaptic densities. However, the role of S-SCAM in establishing the entire synapse is not known. Here, we report significant effects of RNAi-induced S-SCAM knockdown on the number of synapses in early stages of network development in vitro. In vivo knockdown during the first three postnatal weeks reduced the number of dendritic spines in the rat brain neocortex. Knockdown of S-SCAM in cultured hippocampal neurons severely reduced the clustering of both pre- and post-synaptic components. This included synaptic vesicle proteins, pre- and post-synaptic scaffolding proteins, and cell adhesion molecules, suggesting that entire synapses fail to form. Correspondingly, functional and morphological characteristics of developing neurons were affected by reducing S-SCAM protein levels; neurons displayed severely impaired synaptic transmission and reduced dendritic arborization. A next-generation sequencing approach showed normal expression of housekeeping genes but changes in expression levels in 39 synaptic signaling molecules in cultured neurons. These results indicate that S-SCAM mediates the recruitment of all key classes of synaptic molecules during synapse assembly and is critical for the development of neural circuits in the developing brain.

17.
J Neurosci ; 31(43): 15544-59, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031900

RESUMEN

The vesicular glutamate transporter VGLUT1 loads synaptic vesicles with the neurotransmitter glutamate and thereby determines glutamate release at many synapses in the mammalian brain. Due to its function and selective localization, VGLUT1 is one of the most specific markers for glutamatergic synaptic vesicles. It has been used widely to identify glutamatergic synapses, and its expression levels are tightly correlated with changes in quantal size, modulations of synaptic plasticity, and corresponding behaviors. We generated a fluorescent VGLUT1(Venus) knock-in mouse for the analysis of VGLUT1 and glutamatergic synaptic vesicle trafficking. The mutation does not affect glutamatergic synapse function, and thus the new mouse model represents a universal tool for the analysis of glutamatergic transmitter systems in the forebrain. Previous studies demonstrated synaptic vesicle exchange between terminals in vitro. Using the VGLUT1(Venus) knock-in, we show that synaptic vesicles are dynamically shared among boutons in the cortex of mice in vivo. We provide a detailed analysis of synaptic vesicle sharing in vitro, and show that network homeostasis leads to dynamic scaling of synaptic VGLUT1 levels.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Luminiscentes/metabolismo , Neuronas/citología , Terminales Presinápticos/fisiología , Sinapsis/metabolismo , Vesículas Sinápticas/fisiología , Animales , Proteínas Bacterianas/genética , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Homólogo 4 de la Proteína Discs Large , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Luminiscentes/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Transporte de Proteínas/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
18.
J Neurosci ; 31(13): 4886-95, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21451027

RESUMEN

Cochlear inner hair cells (IHCs) use Ca(2+)-dependent exocytosis of glutamate to signal sound information. Otoferlin (Otof), a C(2) domain protein essential for IHC exocytosis and hearing, may serve as a Ca(2+) sensor in vesicle fusion in IHCs that seem to lack the classical neuronal Ca(2+) sensors synaptotagmin 1 (Syt1) and Syt2. Support for the Ca(2+) sensor of fusion hypothesis for otoferlin function comes from biochemical experiments, but additional roles in late exocytosis upstream of fusion have been indicated by physiological studies. Here, we tested the functional equivalence of otoferlin and Syt1 in three neurosecretory model systems: auditory IHCs, adrenal chromaffin cells, and hippocampal neurons. Long-term and short-term ectopic expression of Syt1 in IHCs of Otof (-/-) mice by viral gene transfer in the embryonic inner ear and organotypic culture failed to rescue their Ca(2+) influx-triggered exocytosis. Conversely, virally mediated overexpression of otoferlin did not restore phasic exocytosis in Syt1-deficient chromaffin cells or neurons but enhanced asynchronous release in the latter. We further tested exocytosis in Otof (-/-) hippocampal neurons and in Syt1(-/-) IHCs but found no deficits in vesicle fusion. Expression analysis of different synaptotagmin isoforms indicated that Syt1 and Syt2 are absent from mature IHCs. Our data argue against a simple functional equivalence of the two C(2) domain proteins in exocytosis of IHC ribbon synapses, chromaffin cells, and hippocampal synapses.


Asunto(s)
Exocitosis/fisiología , Proteínas de la Membrana/fisiología , Sinaptotagmina I/fisiología , Estimulación Acústica/métodos , Animales , Animales Recién Nacidos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Exocitosis/genética , Hipocampo/citología , Hipocampo/fisiología , Fusión de Membrana/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Inhibición Neural/genética , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Sinapsis/genética , Sinapsis/fisiología , Sinaptotagmina I/deficiencia , Sinaptotagmina I/genética
19.
Neuron ; 50(4): 575-87, 2006 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-16701208

RESUMEN

The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.


Asunto(s)
Glicina/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/deficiencia , Ácido gamma-Aminobutírico/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Glutamato Descarboxilasa/metabolismo , Immunoblotting , Isoenzimas/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Fenotipo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Simportadores/metabolismo , Cotransportadores de K Cl
20.
Cell Rep ; 30(10): 3261-3269.e4, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160535

RESUMEN

Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle priming proteins of the CAPS and Munc13 families to shape short-term plasticity in vitro, but the relevance of this phenomenon for information processing in the intact brain is unknown. By combining sensory stimulation with in vivo patch-clamp recordings in anesthetized mice, we show that genetic deletion of CAPS-1 in thalamic neurons results in more rapid adaptation of sensory-evoked subthreshold responses in layer 4 neurons of the primary visual cortex. Optogenetic experiments in acute brain slices further reveal that the enhanced adaptation is caused by more pronounced short-term synaptic depression. Our data indicate that neurons engage CAPS-family priming proteins to shape short-term plasticity for optimal sensory information transfer between thalamic and cortical neurons in the intact brain in vivo.


Asunto(s)
Adaptación Ocular , Proteínas de Unión al Calcio/metabolismo , Potenciales Evocados/fisiología , Proteínas del Tejido Nervioso/metabolismo , Sensación , Vesículas Sinápticas/metabolismo , Corteza Visual/fisiología , Animales , Eliminación de Gen , Ratones Noqueados , Neuronas/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA