Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 141(4): 391-405, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36126301

RESUMEN

Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.


Asunto(s)
MicroARNs , Mieloma Múltiple , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Mieloma Múltiple/genética , Cromatina , MicroARNs/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
2.
J Pathol ; 253(3): 292-303, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33166087

RESUMEN

Loss of the tumor suppressor gene Pten in murine prostate recapitulates human carcinogenesis and causes stromal proliferation surrounding murine prostate intraepithelial neoplasia (mPIN), which is reactive to microinvasion. In turn, invasion has been shown to be regulated in part by de novo fatty acid synthesis in prostate cancer. We therefore investigated the effects of genetic ablation of Fasn on invasive potential in prostate-specific Pten knockout mice. Combined genetic ablation of Fasn and Pten reduced the weight and volume of all the prostate lobes when compared to single knockouts. The stromal reaction to microinvasion and the cell proliferation that typically occurs in Pten knockout were largely abolished by Fasn knockout. To verify that Fasn knockout indeed results in decreased invasive potential, we show that genetic ablation and pharmacologic inhibition of FASN in prostate cancer cells significantly inhibit cellular motility and invasion. Finally, combined loss of PTEN with FASN overexpression was associated with lethality as assessed in 660 prostate cancer patients with 14.2 years of median follow-up. Taken together, these findings show that de novo lipogenesis contributes to the aggressive phenotype induced by Pten loss in murine prostate and targeting Fasn may reduce the invasive potential of prostate cancer driven by Pten loss. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Acido Graso Sintasa Tipo I/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Movimiento Celular/genética , Acido Graso Sintasa Tipo I/metabolismo , Humanos , Lipogénesis/fisiología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Invasividad Neoplásica/genética , Neoplasias de la Próstata/patología
3.
Proc Natl Acad Sci U S A ; 116(2): 631-640, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30578319

RESUMEN

A hallmark of prostate cancer progression is dysregulation of lipid metabolism via overexpression of fatty acid synthase (FASN), a key enzyme in de novo fatty acid synthesis. Metastatic castration-resistant prostate cancer (mCRPC) develops resistance to inhibitors of androgen receptor (AR) signaling through a variety of mechanisms, including the emergence of the constitutively active AR variant V7 (AR-V7). Here, we developed an FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition antagonizes CRPC growth through metabolic reprogramming and results in reduced protein expression and transcriptional activity of both full-length AR (AR-FL) and AR-V7. Activation of the reticulum endoplasmic stress response resulting in reduced protein synthesis was involved in IPI-9119-mediated inhibition of the AR pathway. In vivo, IPI-9119 reduced growth of AR-V7-driven CRPC xenografts and human mCRPC-derived organoids and enhanced the efficacy of enzalutamide in CRPC cells. In human mCRPC, both FASN and AR-FL were detected in 87% of metastases. AR-V7 was found in 39% of bone metastases and consistently coexpressed with FASN. In patients treated with enzalutamide and/or abiraterone FASN/AR-V7 double-positive metastases were found in 77% of cases. These findings provide a compelling rationale for the use of FASN inhibitors in mCRPCs, including those overexpressing AR-V7.


Asunto(s)
Lipogénesis , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Res ; 84(5): 703-724, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38038968

RESUMEN

Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE: ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Ratones , Animales , Lipólisis/genética , Metabolismo de los Lípidos , Lipasa/genética , Lipasa/metabolismo , Serina/metabolismo , Microambiente Tumoral , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina
5.
Mol Cancer Res ; 20(5): 673-685, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35105671

RESUMEN

A common outcome of androgen deprivation in prostate cancer therapy is disease relapse and progression to castration-resistant prostate cancer (CRPC) via multiple mechanisms. To gain insight into the recent clinical findings that highlighted genomic alterations leading to hyperactivation of PI3K, we examined the roles of the commonly expressed p110 catalytic isoforms of PI3K in a murine model of Pten-null invasive CRPC. While blocking p110α had negligible effects in the development of Pten-null invasive CRPC, either genetic or pharmacologic perturbation of p110ß dramatically slowed CRPC initiation and progression. Once fully established, CRPC tumors became partially resistant to p110ß inhibition, indicating the acquisition of new dependencies. Driven by our genomic analyses highlighting potential roles for the p110ß/RAC/PAK1 and ß-catenin pathways in CRPC, we found that combining p110ß with RAC/PAK1 or tankyrase inhibitors significantly reduced the growth of murine and human CRPC organoids in vitro and in vivo. Because p110ß activity is dispensable for most physiologic processes, our studies support novel therapeutic strategies both for preventing disease progression into CRPC and for treating CRPC. IMPLICATIONS: This work establishes p110ß as a promising target for preventing the progression of primary PTEN-deficient prostate tumors to CRPC, and for treating established CRPC in combination with RAC/PAK1 or tankyrase inhibitors.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Tanquirasas , Antagonistas de Andrógenos , Animales , Humanos , Masculino , Ratones , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas , Próstata , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética
6.
Neuroscience ; 384: 165-177, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29792904

RESUMEN

A disintegrin and metalloprotease protein 23 (ADAM23) is a transmembrane type I glycoprotein involved with the development and maintenance of the nervous system, including neurite outgrowth, neuronal adhesion and differentiation and regulation of synaptic transmission. In addition, ADAM23 seems to participate in immune response and tumor establishment through interaction with different members of integrin receptors. Here, we describe a novel monoclonal antibody (DL11C8) that specifically recognizes the cysteine-rich domain of both pre-protein (100 kDa) and mature (70 kDa) forms of ADAM23 from different species, including human, rodents and avian orthologs. Using this antibody, we detected both forms of ADAM23 on the cell surface of three neuronal cell lineages (Neuro-2a, SH-SY5Y and CHLA-20), with a higher relative content of ADAM23100 kDa. Furthermore, we demonstrate for the first time that a catalytically inactive member of the ADAM family is present in the membrane signaling platforms, namely lipid rafts. Indeed, the mature ADAM2370 kDa partitions between raft and non-raft membrane domains, while the pro-protein ADAM23100 kDa is mainly expressed in non-raft domains. These membranous distributions were observed in both different brain regions homogenates and primary cultured neurons lysates from mouse cortex and cerebellum. Taken together, these findings point out ADAM23 as a lipid raft molecular component.


Asunto(s)
Proteínas ADAM/metabolismo , Microdominios de Membrana/metabolismo , Animales , Anticuerpos Monoclonales , Línea Celular Tumoral , Humanos , Ratones
7.
Sci Rep ; 7: 44414, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28294120

RESUMEN

Breast cancer is a heterogeneous disease with differences in its clinical, molecular and biological features. Traditionally, immunohistochemical markers together with clinicopathologic parameters are used to classify breast cancer and to predict disease outcome. Triple-negative breast cancer (TNBC) is a particular type of breast cancer that is defined by a lack of expression of hormonal receptors and the HER2 gene. Most cases of TNBC also have a basal-like phenotype (BLBC) with expression of cytokeratin 5/6 and/or EGFR. A basal marker alone is insufficient for a better understanding of the tumor biology of TNBC. In that regard, the ADAM33 gene is silenced by DNA hypermethylation in breast cancer, which suggests that ADAM33 might be useful as a molecular marker. In the present study, we have produced monoclonal antibodies against the ADAM33 protein and have investigated the role of ADAM33 protein in breast cancer. We used 212 breast tumor samples and lower levels of ADAM33 were correlated with TNBC and basal-like markers. A lower level of ADAM33 was also correlated with shorter overall survival and metastasis-free survival and was considered an independent prognostic factor suggesting that ADAM33 is a novel molecular biomarker of TNBC and BLBC that might be useful as a prognostic factor.


Asunto(s)
Proteínas ADAM/genética , Biomarcadores de Tumor/genética , Pronóstico , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Metilación de ADN/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Persona de Mediana Edad , Receptor ErbB-2/genética , Receptores de Estrógenos/genética , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA