Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 580(7805): E20, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32350466

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Cell ; 143(5): 694-702, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21111231

RESUMEN

Posttranslational modifications are increasingly recognized as key strategies used by bacterial and viral pathogens to modulate host factors critical for infection. A number of recent studies illustrate how pathogens use these posttranslational modifications to target central signaling pathways in the host cell, such as the NF-kB and MAP kinase pathways, which are essential for pathogens' replication, propagation, and evasion from host immune responses. These discoveries open new avenues for investigating the fundamental mechanisms of pathogen infection and the development of new therapeutics.


Asunto(s)
Bacterias/inmunología , Procesamiento Proteico-Postraduccional , Virus/inmunología , Bacterias/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Transducción de Señal , Virosis/inmunología , Virosis/virología , Virus/metabolismo
3.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541852

RESUMEN

Approximately 10% of the mouse genome is composed of endogenous retroviruses belonging to different families. In contrast to the situation in the human genome, several of these families correspond to recent, still-infectious elements capable of encoding complete viral particles. The mouse GLN endogenous retrovirus is one of these active families. We previously identified one fully functional provirus from the sequenced genome of the C57BL/6 mouse strain. The GLN envelope protein gives the infectious viral particles an ecotropic host range, and we had demonstrated that the receptor was neither CAT1 nor SMIT1, the two previously identified receptors for mouse ecotropic retroviral envelope proteins. In this study, we have identified SLC19A1, the reduced folate carrier, as the cellular protein used as a receptor by the GLN retrovirus. The ecotropic tropism exhibited by this envelope is due to the presence or absence of an N-linked glycosylation site in the first extracellular loop as well as the specific amino acid sequence of the extracellular domains of the receptor. Like all the other retroviral envelope proteins from the gammaretrovirus genus whose receptors have been identified, the GLN envelope protein uses a member of the solute carrier superfamily as a receptor.IMPORTANCE Endogenous retroviruses are genomic traces of past infections present in all vertebrates. Most of these elements degenerate over time and become nonfunctional, but the mouse genome still contains several families with full infection abilities. The GLN retrovirus is one of them, and its members encode particles that are able to infect only mouse cells. Here, we identified the cellular protein used as a receptor by GLN for cell entry. It is SLC19A1, the reduced folate carrier. We show that GLN infection is limited to mouse cells due to both a mutation in the mouse gene preventing the glycosylation of SLC19A1 and also other residues conserved within the rat but not in the hamster and human proteins. Like all other gammaretroviruses whose receptors have been identified, GLN uses a member of the solute carrier superfamily for cell entry, highlighting the role of these proteins for retroviral infection in mammals.


Asunto(s)
Gammaretrovirus/metabolismo , Productos del Gen env/genética , Receptores Virales/genética , Proteína Portadora de Folato Reducido/genética , Proteínas del Envoltorio Viral/genética , Acoplamiento Viral , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Gammaretrovirus/genética , Genoma/genética , Glicosilación , Células HEK293 , Especificidad del Huésped , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Proteína Portadora de Folato Reducido/metabolismo , Infecciones por Retroviridae/virología
4.
BMC Microbiol ; 20(1): 340, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176677

RESUMEN

BACKGROUND: The use of animal models with depleted intestinal microbiota has recently increased thanks to the huge interest in the potential role of these micro-organisms in human health. In particular, depletion of gut bacteria using antibiotics has recently become popular as it represents a low cost and easy alternative to germ-free animals. Various regimens of antibiotics are used in the literature, which differ in composition, dose, length of treatment and mode of administration. In order to help investigators in choosing the most appropriate protocol for their studies, we compared here three modes of antibiotic delivery to deplete gut bacteria in C57Bl/6 mice. We delivered one of the most frequently used combination of antibiotics (a mix of ampicillin, neomycin, metronidazole and vancomycin) either ad libitum in drinking water or by oral gavage once or twice per day. RESULTS: We quantified the global bacterial density, as well as the abundance of specific bacterial and fungal taxa, in mouse feces in response to antibiotics exposure. We observed that oral gavage once a day with antibiotics is not a reliable method as it occasionally triggers hyperproliferation of bacteria belonging to the Escherichia/Shigella taxon and leads, as a consequence, to a moderate decrease in fecal bacterial density. Antibiotics delivery by oral gavage twice a day or in drinking water induces in contrast a robust and consistent depletion of mouse fecal bacteria, as soon as 4 days of treatment, and is associated with an increase in fecal moisture content. Extending exposure to antibiotics beyond 7 days does not improve total bacteria depletion efficiency and promotes fungal overgrowth. We show in addition that all tested protocols impact neither gut microbiota recolonization efficiency, 1 or 2 weeks after the stop of antibiotics, nor mice body composition after 1 week of treatment. CONCLUSIONS: Our study provides key experimental data and highlights important parameters to consider before selecting an appropriate protocol for antibiotic-mediated depletion of gut bacteria, in order to optimize the accuracy and the reproducibility of results and to facilitate comparison between studies.


Asunto(s)
Antibacterianos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Administración Oral , Animales , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/crecimiento & desarrollo , Composición Corporal , Heces/microbiología , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/genética , Hongos/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL
5.
Mol Cell Proteomics ; 17(8): 1627-1636, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29752379

RESUMEN

Bacterial pathogens use various strategies to interfere with host cell functions. Among these strategies, bacteria modulate host gene transcription, thereby modifying the set of proteins synthetized by the infected cell. Bacteria can also target pre-existing host proteins and modulate their post-translational modifications or trigger their degradation. Analysis of protein levels variations in host cells during infection allows to integrate both transcriptional and post-transcriptional regulations induced by pathogens. Here, we focused on host proteome alterations induced by the toxin Listeriolysin O (LLO), secreted by the bacterial pathogen Listeria monocytogenes. We showed that a short-term treatment with LLO remodels the host cell proteome by specifically decreasing the abundance of 149 proteins. The same decrease in host protein levels was observed in different epithelial cell lines but not in macrophages. We show in particular that this proteome remodeling affects several ubiquitin and ubiquitin-like ligases and that LLO leads to major changes in the host ubiquitylome. Strikingly, this toxin-induced proteome remodeling involves only post-transcriptional regulations, as no modification in the transcription levels of the corresponding genes was observed. In addition, we could show that Perfringolysin O, another bacterial pore-forming toxin similar to LLO, also induces host proteome changes. Taken together, our data reveal that different bacterial pore-forming toxins induce important host proteome remodeling, that may impair epithelial cell functions.


Asunto(s)
Toxinas Bacterianas/toxicidad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Proteínas de Choque Térmico/toxicidad , Proteínas Hemolisinas/toxicidad , Interacciones Huésped-Patógeno , Proteoma/metabolismo , Animales , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células HeLa , Células Hep G2 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Células RAW 264.7 , Ubiquitinación/efectos de los fármacos
6.
Cell Microbiol ; 19(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27739224

RESUMEN

Bacterial pathogens can interfere during infection with host cell organelles, such as mitochondria, the endoplasmic reticulum-Golgi system or nuclei. As important cellular functions are often compartmentalized in these organelles, their targeting allows pathogens to manipulate key host functions during infection. Here, we identify lysosomes as a new class of organelles targeted by the pathogenic bacterium Listeria monocytogenes. We demonstrate that extracellular Listeria, via secretion of the pore-forming toxin listeriolysin O, alters lysosomal integrity in epithelial cells but not in macrophages. Listeriolysin O induces lysosomal membrane permeabilization and release of lysosomal content, such as cathepsins proteases, which remain transiently active in the host cytosol. We furthermore show that other bacterial pore-forming toxins, such as perfringolysin O and pneumolysin, also induce lysosomes alteration. Together, our data unveil a novel activity of bacterial cholesterol-dependent cytolysins.


Asunto(s)
Células Epiteliales/microbiología , Proteínas de Choque Térmico/fisiología , Proteínas Hemolisinas/fisiología , Listeria monocytogenes/fisiología , Listeriosis/microbiología , Lisosomas/fisiología , Animales , Toxinas Bacterianas , Células CACO-2 , Permeabilidad de la Membrana Celular , Células HeLa , Células Hep G2 , Humanos , Listeriosis/patología , Lisosomas/microbiología , Ratones , Proteolisis , Células RAW 264.7
7.
Proc Natl Acad Sci U S A ; 111(34): 12432-7, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114211

RESUMEN

SUMOylation is an essential ubiquitin-like modification involved in important biological processes in eukaryotic cells. Identification of small ubiquitin-related modifier (SUMO)-conjugated residues in proteins is critical for understanding the role of SUMOylation but remains experimentally challenging. We have set up a powerful and high-throughput method combining quantitative proteomics and peptide immunocapture to map SUMOylation sites and have analyzed changes in SUMOylation in response to stimuli. With this technique we identified 295 SUMO1 and 167 SUMO2 sites on endogenous substrates of human cells. We further used this strategy to characterize changes in SUMOylation induced by listeriolysin O, a bacterial toxin that impairs the host cell SUMOylation machinery, and identified several classes of host proteins specifically deSUMOylated in response to this toxin. Our approach constitutes an unprecedented tool, broadly applicable to various SUMO-regulated cellular processes in health and disease.


Asunto(s)
Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Secuencia de Aminoácidos , Toxinas Bacterianas/toxicidad , Sitios de Unión , Células HeLa , Proteínas de Choque Térmico/toxicidad , Proteínas Hemolisinas/toxicidad , Humanos , Datos de Secuencia Molecular , Mapeo Peptídico/métodos , Proteómica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación/efectos de los fármacos
8.
Nature ; 464(7292): 1192-5, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20414307

RESUMEN

During infection, pathogenic bacteria manipulate the host cell in various ways to allow their own replication, propagation and escape from host immune responses. Post-translational modifications are unique mechanisms that allow cells to rapidly, locally and specifically modify activity or interactions of key proteins. Some of these modifications, including phosphorylation and ubiquitylation, can be induced by pathogens. However, the effects of pathogenic bacteria on SUMOylation, an essential post-translational modification in eukaryotic cells, remain largely unknown. Here we show that infection with Listeria monocytogenes leads to a decrease in the levels of cellular SUMO-conjugated proteins. This event is triggered by the bacterial virulence factor listeriolysin O (LLO), which induces a proteasome-independent degradation of Ubc9, an essential enzyme of the SUMOylation machinery, and a proteasome-dependent degradation of some SUMOylated proteins. The effect of LLO on Ubc9 is dependent on the pore-forming capacity of the toxin and is shared by other bacterial pore-forming toxins like perfringolysin O (PFO) and pneumolysin (PLY). Ubc9 degradation was also observed in vivo in infected mice. Furthermore, we show that SUMO overexpression impairs bacterial infection. Together, our results reveal that Listeria, and probably other pathogens, dampen the host response by decreasing the SUMOylation level of proteins critical for infection.


Asunto(s)
Listeria monocytogenes/patogenicidad , Listeriosis/metabolismo , Listeriosis/microbiología , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Toxinas Bacterianas/metabolismo , Línea Celular , Células HeLa , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Ratones , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Factores de Virulencia/metabolismo
9.
Biol Sex Differ ; 15(1): 6, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217033

RESUMEN

RATIONALE: Patients with anorexia nervosa (AN) often present sleep disorders and circadian hormonal dysregulation. The role of the microbiota-gut-brain axis in the regulation of feeding behavior has emerged during the last decades but its relationships with the circadian rhythm remains poorly documented. Thus, we aimed to characterize the circadian clock genes expression in peripheral and central tissues in the activity-based anorexia mouse model (ABA), as well as the dynamics of the gut-microbiota composition. METHODS: From day 1 to day 17, male and female C57Bl/6 mice were submitted or not to the ABA protocol (ABA and control (CT) groups), which combines a progressive limited access to food and a free access to a running wheel. At day 17, fasted CT and ABA mice were euthanized after either resting (EoR) or activity (EoA) phase (n = 10-12 per group). Circadian clock genes expression was assessed by RT-qPCR on peripheral (liver, colon and ileum) and central (hypothalamic suprachiasmatic nucleus or SCN) tissues. Cecal bacterial taxa abundances were evaluated by qPCR. Data were compared by two-way ANOVA followed by post-tests. RESULTS: ABA mice exhibited a lower food intake, a body weight loss and an increase of diurnal physical activity that differ according with the sex. Interestingly, in the SCN, only ABA female mice exhibited altered circadian clock genes expression (Bmal1, Per1, Per2, Cry1, Cry2). In the intestinal tract, modification of clock genes expression was also more marked in females compared to males. For instance, in the ileum, female mice showed alteration of Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Rev-erbα mRNA levels, while only Per2 and Cry1 mRNAs were affected by ABA model in males. By contrast, in the liver, clock genes expression was more markedly affected in males compared to females in response to ABA. Finally, circadian variations of gut-bacteria abundances were observed in both male and female mice and sex-dependent alteration were observed in response to the ABA model. CONCLUSIONS: This study shows that alteration of circadian clock genes expression at both peripheral and central levels occurs in response to the ABA model. In addition, our data underline that circadian variations of the gut-microbiota composition are sex-dependent.


Anorexia nervosa is an eating disorder with a female predominance. However, the underlying pathophysiological mechanisms are still incompletely understood. Patients with anorexia nervosa often show alterations in circadian rhythm, including sleep disorders and modifications in hormone circadian rhythm. The circadian rhythm is controlled in the central nervous system, particularly in the suprachiasmatic nucleus, but clocks have also been described in peripheral tissues. To better understand the putative role of circadian rhythm in the pathophysiology of anorexia nervosa, we have conducted an experimental study in a rodent model of anorexia nervosa called "activity-based anorexia" on both males and females. Interestingly, we observed that the expression of genes involved in the circadian rhythm is affected by the activity-based anorexia model in both the suprachiasmatic nucleus and peripheral tissues, such as the small intestine and liver. In addition, gut­microbiota also shows circadian variation. Interestingly, the anorexia-induced alterations of circadian variations (clock genes expression and gut­microbiota composition) are sex- and tissue-dependent. For instance, female mice exhibited more marked alterations in the ileum, whereas, in males, modifications were more pronounced in the liver. This study highlights sex-dependent alterations of circadian clock genes expression and of gut­microbiota in response to the anorexia rodent model. Further experiments should be performed to investigate the contribution of these mechanisms in the etiology of anorexia nervosa and the higher prevalence in females.


Asunto(s)
Factores de Transcripción ARNTL , Microbiota , Animales , Femenino , Masculino , Ratones , Anorexia , Factores de Transcripción ARNTL/genética , Ritmo Circadiano/genética , Expresión Génica , ARN Mensajero/metabolismo , Proteínas CLOCK
10.
PLoS Pathog ; 7(10): e1002309, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028653

RESUMEN

The IAPE (Intracisternal A-type Particles elements with an Envelope) family of murine endogenous retroelements is present at more than 200 copies in the mouse genome. We had previously identified a single copy that proved to be fully functional, i.e. which can generate viral particles budding out of the cell and infectious on a series of cells, including human cells. We also showed that IAPE are the progenitors of the highly reiterated IAP elements. The latter are now strictly intracellular retrotransposons, due to the loss of the envelope gene and re-localisation of the associated particles in the course of evolution. In the present study we searched for the cellular receptor of the IAPE elements, by using a lentiviral human cDNA library and a pseudotype assay on transduced cells. We identified Ephrin A4, a GPI-anchored molecule involved in several developmental processes, as a receptor for the IAPE pseudotypes. We also found that the other 4 members of the Ephrin A family -but not those of the closely related Ephrin B family- were also able to mediate IAPE cell entry, thus significantly increasing the amount of possible cell types susceptible to IAPE infection. We show that these include mouse germline cells, as illustrated by immunohistochemistry experiments, consistent with IAPE genomic amplification by successive re-infection. We propose that the uncovered properties of the identified receptors played a role in the accumulation of IAPE elements in the mouse genome, and in the survival of a functional copy.


Asunto(s)
Retrovirus Endógenos/patogenicidad , Efrinas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Infecciones por Retroviridae/virología , Animales , Chlorocebus aethiops , Retrovirus Endógenos/genética , Efrina-A4/genética , Efrina-A4/metabolismo , Efrinas/genética , Femenino , Regulación Viral de la Expresión Génica , Biblioteca de Genes , Genes de Partícula A Intracisternal/genética , Genes Virales , Células HEK293 , Humanos , Ratones , Ovario/metabolismo , Infecciones por Retroviridae/metabolismo , Células Vero , Replicación Viral
11.
Gut Pathog ; 15(1): 4, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707889

RESUMEN

Coagulase negative staphylococci (CoNS) are a heterogeneous group of bacteria that colonize different types of human epithelia. These bacteria have a highly variable pathogenic potential ranging from avirulent species to major nosocomial pathogens. Staphylococcus warneri is a CoNS species considered to be nonpathogenic. Here, we identify that S. warneri is a natural member of both human and mouse gut microbiota. In addition, we demonstrate that this bacterium is able to get internalized into human cells. We show that S. warneri efficiently invades several human cell types and, more specifically, intestinal epithelial cells, using actin-dependent mechanisms. In contrast to bona fide pathogens, S. warneri does not actively replicate within intestinal cells or resist killing by macrophages. Together, our results highlight that bacteria from the human gut microbiota that are not associated with a high pathogenic potential, can actively invade intestinal cells and may, in this way, impact intestinal physiology.

12.
bioRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986820

RESUMEN

Specific determinants associated with Uropathogenic Escherichia coli (UPEC) causing recurrent cystitis are still poorly characterized. The aims of this study were (i) to describe genomic and phenotypic traits associated with recurrence using a large collection of recurrent and paired sporadic UPEC isolates, and (ii) to explore within-host genomic adaptation associated with recurrence using series of 2 to 5 sequential UPEC isolates. Whole genome comparative analyses between 24 recurrent cystitis isolates (RCIs) and 24 phylogenetically paired sporadic cystitis isolates (SCIs) suggested a lower prevalence of putative mobile genetic elements (MGE) in RCIs, such as plasmids and prophages. The intra-patient evolution of the 24 RCI series over time was characterized by SNP occurrence in genes involved in metabolism or membrane transport, and by plasmid loss in 5 out of the 24 RCI series. Genomic evolution occurred early in the course of recurrence, suggesting rapid adaptation to strong selection pressure in the urinary tract. However, RCIs did not exhibit specific virulence factor determinants and could not be distinguished from SCIs by their fitness, biofilm formation, or ability to invade HTB-9 bladder epithelial cells. Taken together, these results suggest a rapid but not convergent adaptation of RCIs that involves both strain- and host-specific characteristics.

13.
Nutr Rev ; 80(3): 381-391, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34010427

RESUMEN

Anorexia nervosa (AN) is an eating disorder characterized by low food intake, severe body weight loss, intense fear of gaining weight, and dysmorphophobia. This chronic disease is associated with both psychiatric and somatic comorbidities. Over the years, clinical studies have accumulated evidence that viral or bacterial infections may promote the onset of eating disorders such as AN. This review aims to describe how infections and the subsequent immune responses affect food intake regulation in the short term and also how these processes may lead to long-term intestinal disorders, including gut barrier disruption and gut microbiota dysbiosis, even after the clearance of the pathogens. We discuss in particular how infection-mediated intestinal dysbiosis may promote the onset of several AN symptoms and comorbidities, including appetite dysregulation, functional gastrointestinal disorders, and mood disorders.


Asunto(s)
Anorexia Nerviosa , Microbioma Gastrointestinal , Anorexia Nerviosa/microbiología , Anorexia Nerviosa/psicología , Eje Cerebro-Intestino , Disbiosis , Microbioma Gastrointestinal/fisiología , Humanos , Trastornos Fóbicos
14.
Gut Microbes ; 14(1): 2108280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35978476

RESUMEN

The gut microbiota produces a wide variety of metabolites, which interact with intestinal cells and contribute to host physiology. The effect of gut commensal bacteria on host protein SUMOylation, an essential ubiquitin-like modification involved in various intestinal functions, remains, however, unknown. Here, we show that short chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) produced by the gut microbiota increase protein SUMOylation in intestinal cells in a pH-dependent manner. We demonstrate that these metabolites inactivate intestinal deSUMOylases and promote the hyperSUMOylation of nuclear matrix-associated proteins. We further show that BCFAs inhibit the NF-κB pathway, decrease pro-inflammatory cytokine expression, and promote intestinal epithelial integrity. Together, our results reveal that fatty acids produced by gut commensal bacteria regulate intestinal physiology by modulating SUMOylation and illustrate a new mechanism of dampening of host inflammatory responses triggered by the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Bacterias/genética , Bacterias/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/fisiología , Intestinos/microbiología , Sumoilación
15.
Cancers (Basel) ; 14(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36139563

RESUMEN

Chemotherapy-related cognitive impairment (CRCI) and fatigue constitute common complaints among cancer patient survivors. Panax quinquefolius has been shown to be effective against fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in activity/fatigue, emotional reactivity and cognitive functions impacted by 5-Fluorouracil (5-FU) chemotherapy. 5-FU significantly reduces the locomotor/exploration activity potentially associated with fatigue, evokes spatial cognitive impairments and leads to a decreased neurogenesis within the hippocampus (Hp). Qiseng® fully prevents the impact of chemotherapy on activity/fatigue and on neurogenesis, specifically in the ventral Hp. We observed that the chemotherapy treatment induces intestinal damage and inflammation associated with increased levels of Lactobacilli in mouse gut microbiota and increased expression of plasma pro-inflammatory cytokines, notably IL-6 and MCP-1. We demonstrated that Qiseng® prevents the 5-FU-induced increase in Lactobacilli levels and further compensates the 5-FU-induced cytokine release. Concomitantly, in the brains of 5-FU-treated mice, Qiseng® partially attenuates the IL-6 receptor gp130 expression associated with a decreased proliferation of neural stem cells in the Hp. In conclusion, Qiseng® prevents the symptoms of fatigue, reduced chemotherapy-induced neuroinflammation and altered neurogenesis, while regulating the mouse gut microbiota composition, thus protecting against intestinal and systemic inflammation.

16.
Nature ; 433(7024): 430-3, 2005 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-15674295

RESUMEN

Endogenous retroviruses are multicopy retroelements accounting for nearly 10% of murine or human genomes. These retroelements spread into our ancestral genome millions of years ago and have acted as a driving force for genome evolution. Endogenous retroviruses may also be deleterious for their host, and have been implicated in cancers and autoimmune diseases. Most retroelements have lost replication competence because of the accumulation of inactivating mutations, but several, including some murine intracisternal A-particle (IAP) and MusD sequences, are still mobile. These elements encode a reverse transcriptase activity and move by retrotransposition, an intracellular copy-and-paste process involving an RNA intermediate. The host has developed mechanisms to silence their expression, mainly cosuppression and gene methylation. Here we identify another level of antiviral control, mediated by APOBEC3G, a member of the cytidine deaminase family that was previously shown to block HIV replication. We show that APOBEC3G markedly inhibits retrotransposition of IAP and MusD elements, and induces G-to-A hypermutations in their DNA copies. APOBEC3G, by editing viral genetic material, provides an ancestral wide cellular defence against endogenous and exogenous invaders.


Asunto(s)
Citidina Desaminasa/metabolismo , Retrovirus Endógenos/genética , Proteínas/metabolismo , Retroelementos/genética , Desaminasa APOBEC-3G , Animales , Secuencia de Bases , Línea Celular , Citidina Desaminasa/genética , Genoma , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Mutagénesis/genética , Nucleósido Desaminasas , Proteínas/genética , Proteínas Represoras , Integración Viral/genética
17.
Proc Natl Acad Sci U S A ; 105(45): 17532-7, 2008 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-18988732

RESUMEN

Syncytin-2 is an envelope gene from the human endogenous retrovirus FRD (HERV-FRD) co-opted by an ancestral primate host, conserved in evolution over >40 Myr, specifically expressed in the placenta, and with a cell-cell fusogenic activity likely contributing to placenta morphogenesis. Here, using the GeneBridge4 human/Chinese hamster radiation hybrid panel, we mapped and identified the human receptor for syncytin-2. This receptor-namely Major Facilitator Superfamily Domain Containing 2 (MFSD2)-belongs to a large family of presumptive carbohydrate transporters with 10-12 membrane-spanning domains, is located at chromosomal position 1p34.2, and is conserved in evolution. An expression vector for MFSD2 confers fusogenicity to otherwise insusceptible cells upon transfection of syncytin-2. It also confers infectivity to syncytin-2 pseudotypes, consistent with this protein being the receptor for the ancestrally acquired HERV-FRD family of endogenous retroviruses. At variance with the human gene, neither mouse nor rat MFSD2 can mediate membrane fusion, which is consistent with the fact that the envelope-derived syncytin genes co-opted by rodents during evolution are not orthologous to the human syncytin genes. Remarkably, a real-time quantitative RT-PCR analysis of MFSD2 in various human tissues demonstrates specific expression in the placenta, as well as in the human BeWo choriocarcinoma cell line, which discloses enhancement of receptor expression upon induction by forskolin of cell-cell fusion and syncytium formation. In situ hybridization of human placental tissue using an MFSD2-specific probe further unambiguously demonstrates receptor expression at the level of the syncytiotrophoblast, again consistent with a role in placenta morphogenesis.


Asunto(s)
Cromosomas Humanos Par 1/genética , Retrovirus Endógenos/genética , Proteínas de la Membrana/genética , Placenta/metabolismo , Proteínas Gestacionales/metabolismo , Animales , Línea Celular Tumoral , Cartilla de ADN/genética , Femenino , Humanos , Hibridación in Situ , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Fluorescente , Plásmidos/genética , Proteínas Gestacionales/genética , Transporte de Proteínas/genética , Mapeo de Híbrido por Radiación , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Clin Nutr ; 40(1): 181-189, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32460959

RESUMEN

BACKGROUND & AIMS: Anorexia Nervosa is a severe disease depending on both biological, psychological and environmental factors. The gut microbiota has recently been proposed as one of the biological factors potentially involved in the onset or maintenance of Anorexia Nervosa. To unravel the potential role of the gut microbiota in this disease, we characterized the dysbiosis occurring in a mouse model of Anorexia and correlated bacteria level changes with different physiological parameters such as body weight, food intake or levels of hypothalamic neuropeptides. METHODS: We used the Activity-Based Anorexia (ABA) mouse model, which combines food restriction and physical activity, and which mimics core features of Anorexia Nervosa. We characterized the gut microbiota alteration in ABA mice by combining 16S rRNA gene sequencing and quantitative PCR analyses of targeted genera or species. RESULTS: We identified 68 amplicon sequence variants (ASVs) with decreased levels and 8 ASVs with increased levels in the cecal content of ABA mice compared to control mice. We observed in particular in ABA mice increases in the abundance of Clostridium cocleatum and several Lactobacillus species and a decrease in the abundance of Burkholderiales compared to control mice. Interestingly, we show that most of the observed gut microbiota alterations are due to food restriction and are not affected by physical activity. In addition, we identified several bacterial groups that correlate with mice body weight, food intake, lean and fat masses as well as with hypothalamic mRNA levels of NPY (Neuropeptide Y) and POMC (Pro-opiomelanocortin). CONCLUSIONS: Our study provides a comprehensive characterization of the gut microbiota dysbiosis occurring in the Activity-Based Anorexia mouse model. These data constitute a valuable resource to further decipher the role of the gut microbiota in the different facets of anorexia pathophysiology, such as functional gastrointestinal disorders, appetite regulation and mood disorders.


Asunto(s)
Anorexia Nerviosa/microbiología , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Peso Corporal , Modelos Animales de Enfermedad , Ingestión de Alimentos , Hipotálamo/metabolismo , Ratones , Neuropéptidos/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico 16S/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Clin Nutr ; 40(5): 2734-2744, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33933739

RESUMEN

BACKGROUND & AIMS: In the last decade, the role of the microbiota-gut-brain axis in eating behavior and anxiety-depressive disorders has gained increasing attention. Although a gut microbiota dysbiosis has been reported in anorectic patients, its pathophysiological role remains poorly understood. Thus, we aimed to characterize the potential role of gut microbiota by evaluating the effects of its depletion in the Activity-Based Anorexia (ABA) mouse model both in male and female mice. METHODS: Male and female C57Bl/6 mice were submitted (ABA group) or not (CT group) to the ABA protocol, which combines access to a running wheel with a progressive limited food access. Gut microbiota was previously depleted or not by a cocktail of antibiotics (ATB) delivered by oral gavages. We monitored body composition, anxiety-like behavior, leptin and adiponectin plasma levels, hypothalamic and hippocampal neuropeptides mRNA levels, as well as dopamine (DRD) and serotonin (5HT1 and 4) receptors mRNA expression. RESULTS: In response to the ABA model, the body weight loss was less pronounced in ATB-treated ABA compared to untreated ABA, while food intake remained unaffected by ATB treatment. ATB-treated ABA exhibited increased fat mass and decreased lean mass compared to untreated ABA both in male and female mice, whereas but plasma adipokine concentrations were affected in a sex-dependent manner. Only male ABA mice showed a reduced anticipatory physical activity in response to ATB treatment. Similarly, anxiety-like behavior was mainly affected in ATB-treated ABA male mice compared to ATB-treated ABA female mice, which was associated with male-specific alterations of hypothalamic CRH mRNA and hippocampal DRD and 5-HT1A mRNA levels. CONCLUSIONS: Our study provides evidence that ATB-induced gut microbiota depletion triggers alterations of nutritional and behavioral responses to the activity-based anorexia model in a sex-dependent manner.


Asunto(s)
Anorexia , Ansiedad , Conducta Animal , Microbioma Gastrointestinal/efectos de los fármacos , Estado Nutricional , Anfotericina B/farmacología , Animales , Antibacterianos/farmacología , Antifúngicos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero , Factores Sexuales
20.
Nutrients ; 13(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34579168

RESUMEN

In any research field, data access and data integration are major challenges that even large, well-established consortia face. Although data sharing initiatives are increasing, joint data analyses on nutrition and microbiomics in health and disease are still scarce. We aimed to identify observational studies with data on nutrition and gut microbiome composition from the Intestinal Microbiomics (INTIMIC) Knowledge Platform following the findable, accessible, interoperable, and reusable (FAIR) principles. An adapted template from the European Nutritional Phenotype Assessment and Data Sharing Initiative (ENPADASI) consortium was used to collect microbiome-specific information and other related factors. In total, 23 studies (17 longitudinal and 6 cross-sectional) were identified from Italy (7), Germany (6), Netherlands (3), Spain (2), Belgium (1), and France (1) or multiple countries (3). Of these, 21 studies collected information on both dietary intake (24 h dietary recall, food frequency questionnaire (FFQ), or Food Records) and gut microbiome. All studies collected stool samples. The most often used sequencing platform was Illumina MiSeq, and the preferred hypervariable regions of the 16S rRNA gene were V3-V4 or V4. The combination of datasets will allow for sufficiently powered investigations to increase the knowledge and understanding of the relationship between food and gut microbiome in health and disease.


Asunto(s)
Microbioma Gastrointestinal , Encuestas Nutricionales , Ciencias de la Nutrición , Estudios Observacionales como Asunto , Encuestas sobre Dietas/métodos , Ingestión de Alimentos , Europa (Continente) , Humanos , Difusión de la Información , Metadatos , Encuestas Nutricionales/métodos , Ciencias de la Nutrición/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA