Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 607: 49-53, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35366543

RESUMEN

Tuberculosis (TB) is one of the leading causes of death worldwide, due to a single pathogen, Mycobacterium tuberculosis. To eradicate TB, management of drug-resistant strains is fundamental, therefore, the identification and characterization of drug targets is pivotal. In this work we aim at describing the relationships with the well-known drug target DprE1 and DprE2, working in association for the biosynthesis of the arabinogalactan precursor, essential component of mycobacterial cell wall. We demonstrated that the enzymes behave as a stable heterodimeric complex, once co-expressed into the same system. This complex showed improved catalytic properties, compared to the singularly expressed enzymes, demonstrating that co-expression is fundamental to achieve the proper folding of the active sites. Our results represent an important step forward in deciphering the functional properties of these enzymes, and lay the foundations for structural studies, useful for development of more specific inhibitors helpful to contrast the spreading of drug-resistant strains.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Humanos , Racemasas y Epimerasas , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
2.
Nanomedicine ; 23: 102113, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669084

RESUMEN

C109 is a potent but poorly soluble FtsZ inhibitor displaying promising activity against Burkholderia cenocepacia, a high-risk pathogen for cystic fibrosis (CF) sufferers. To harness C109 for inhalation, we developed nanocrystal-embedded dry powders for inhalation suspension consisting in C109 nanocrystals stabilized with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) embedded in hydroxypropyl-ß-cyclodextrin (CD). The powders could be safely re-dispersed in water for in vitro aerosolization. Owing to the presence of a PEG shell, the rod shape and the peculiar aspect ratio, C109 nanocrystals were able to diffuse through artificial CF mucus. The promising technological features were completed by encouraging in vitro/in vivo effects. The formulations displayed no toxicity towards human bronchial epithelial cells and were active against planktonic and sessile B. cenocepacia strains. The efficacy of C109 nanosuspensions in combination with piperacillin was confirmed in a Galleria mellonella infection model, strengthening their potential for combined therapy of B. cenocepacia lung infections.


Asunto(s)
Antibacterianos , Proteínas Bacterianas/antagonistas & inhibidores , Bronquios/microbiología , Infecciones por Burkholderia/tratamiento farmacológico , Burkholderia cenocepacia/crecimiento & desarrollo , Fibrosis Quística/tratamiento farmacológico , Proteínas del Citoesqueleto/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos , Células Epiteliales/microbiología , Nanopartículas , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Bronquios/metabolismo , Bronquios/patología , Infecciones por Burkholderia/metabolismo , Infecciones por Burkholderia/patología , Línea Celular Tumoral , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico
3.
Artículo en Inglés | MEDLINE | ID: mdl-30297366

RESUMEN

To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a Burkholderia cenocepacia library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against B. cenocepacia, for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified B. cenocepacia FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including Mycobacterium abscessus C109 effectively cleared B. cenocepacia infection in the Caenorhabditis elegans model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Burkholderia cenocepacia/genética , Proteínas del Citoesqueleto/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Burkholderia/tratamiento farmacológico , Infecciones por Burkholderia/microbiología , Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/aislamiento & purificación , Caenorhabditis elegans/microbiología , Fibrosis Quística/microbiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Genes Esenciales , Proteínas Fluorescentes Verdes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Mutación
4.
Biochemistry ; 55(23): 3241-50, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27198181

RESUMEN

Burkholderia cenocepacia is a major concern among respiratory tract infections in cystic fibrosis patients. This pathogen is particularly difficult to treat because of its high level of resistance to the clinically relevant antimicrobial agents. In B. cenocepacia, the quorum sensing cell-cell communication system is involved in different processes that are important for bacterial virulence, such as biofilm formation and protease and siderophore production. Targeting the enzymes involved in this process represents a promising therapeutic approach. With the aim of finding effective quorum sensing inhibitors, we have determined the three-dimensional structure of B. cenocepacia diffusible factor synthase A, DfsA. This bifunctional crotonase (dehydratase/thioesterase) produces the characteristic quorum sensing molecule of B. cenocepacia, cis-2-dodecenoic acid or BDSF, starting from 3-hydroxydodecanoyl-acyl carrier protein. Unexpectedly, the crystal structure revealed the presence of a lipid molecule in the catalytic site of the enzyme, which was identified as dodecanoic acid. Our biochemical characterization shows that DfsA is able to use dodecanoyl-acyl carrier protein as a substrate, demonstrating that dodecanoic acid, the product of this reaction, is released very slowly from the DfsA active site, therefore acting as a DfsA inhibitor. This molecule shows an unprecedented conformational arrangement inside the DfsA active site. In contrast with previous hypotheses, our data illustrate how DfsA and closely related homologous enzymes can recognize long hydrophobic substrates without large conformational changes or assistance by additional regulator molecules. The elucidation of the substrate binding mode in DfsA provides the starting point for structure-based drug discovery studies targeting B. cenocepacia quorum sensing-assisted virulence.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/metabolismo , Ácidos Grasos/metabolismo , Percepción de Quorum , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Cromatografía de Gases y Espectrometría de Masas , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato
5.
J Biol Chem ; 290(52): 31077-89, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26546681

RESUMEN

Rv2466c is a key oxidoreductase that mediates the reductive activation of TP053, a thienopyrimidine derivative that kills replicating and non-replicating Mycobacterium tuberculosis, but whose mode of action remains enigmatic. Rv2466c is a homodimer in which each subunit displays a modular architecture comprising a canonical thioredoxin-fold with a Cys(19)-Pro(20)-Trp(21)-Cys(22) motif, and an insertion consisting of a four α-helical bundle and a short α-helical hairpin. Strong evidence is provided for dramatic conformational changes during the Rv2466c redox cycle, which are essential for TP053 activity. Strikingly, a new crystal structure of the reduced form of Rv2466c revealed the binding of a C-terminal extension in α-helical conformation to a pocket next to the active site cysteine pair at the interface between the thioredoxin domain and the helical insertion domain. The ab initio low-resolution envelopes obtained from small angle x-ray scattering showed that the fully reduced form of Rv2466c adopts a "closed" compact conformation in solution, similar to that observed in the crystal structure. In contrast, the oxidized form of Rv2466c displays an "open" conformation, where tertiary structural changes in the α-helical subdomain suffice to account for the observed conformational transitions. Altogether our structural, biochemical, and biophysical data strongly support a model in which the formation of the catalytic disulfide bond upon TP053 reduction triggers local structural changes that open the substrate binding site of Rv2466c allowing the release of the activated, reduced form of TP053. Our studies suggest that similar structural changes might have a functional role in other members of the thioredoxin-fold superfamily.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Profármacos/química , Multimerización de Proteína , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
6.
Antimicrob Agents Chemother ; 58(5): 2944-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24550336

RESUMEN

On using the streptomycin-starved 18b strain as a model for nonreplicating Mycobacterium tuberculosis, we identified a 5-nitrothiophene compound as highly active but not cytotoxic. Mutants resistant to 5-nitrothiophenes were found be cross-resistant to the nitroimidazole PA-824 and unable to produce the F420 cofactor. Furthermore, 5-nitrothiophenes were shown to be activated by the F420-dependent nitroreductase Ddn and to release nitric oxide, a mechanism of action identical to that described for nitroimidazoles.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tiofenos/farmacología , Mycobacterium tuberculosis/genética , Nitroimidazoles/farmacología
7.
Antimicrob Agents Chemother ; 58(4): 2415-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24395233

RESUMEN

The discovery of new compounds that are able to inhibit the growth of Burkholderia cenocepacia is of primary importance for cystic fibrosis patients. Here, the mechanism of resistance to a new pyridine derivative already shown to be effective against Mycobacterium tuberculosis and to have good activity toward B. cenocepacia was investigated. Increased expression of a resistance-nodulation-cell division (RND) efflux system was detected in the resistant mutants, thus confirming their important roles in B. cenocepacia antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Antituberculosos/farmacología , Burkholderia cenocepacia/efectos de los fármacos , Piridinas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Farmacorresistencia Bacteriana/genética
8.
Antimicrob Agents Chemother ; 58(12): 7424-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25267676

RESUMEN

Burkholderia cenocepacia is notorious for causing respiratory tract infections in people with cystic fibrosis. Infections with this organism are particularly difficult to treat due to its high level of intrinsic resistance to most antibiotics. Multidrug resistance in B. cenocepacia can be ascribed to different mechanisms, including the activity of efflux pumps and biofilm formation. In the present study, the effects of deletion of the 16 operons encoding resistance-nodulation-cell division (RND)-type efflux pumps in B. cenocepacia strain J2315 were investigated by determining the MICs of various antibiotics and by investigating the antibiofilm effect of these antibiotics. Finally, the expression levels of selected RND genes in treated and untreated cultures were investigated using reverse transcriptase quantitative PCR (RT-qPCR). Our data indicate that the RND-3 and RND-4 efflux pumps are important for resistance to various antimicrobial drugs (including tobramycin and ciprofloxacin) in planktonic B. cenocepacia J2315 populations, while the RND-3, RND-8, and RND-9 efflux systems protect biofilm-grown cells against tobramycin. The RND-8 and RND-9 efflux pumps are not involved in ciprofloxacin resistance. Results from the RT-qPCR experiments on the wild-type strain B. cenocepacia J2315 suggest that there is little regulation at the level of mRNA expression for these efflux pumps under the conditions tested.


Asunto(s)
Secuencia de Bases , Biopelículas/efectos de los fármacos , Burkholderia cenocepacia/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Genes MDR , Plancton/efectos de los fármacos , Eliminación de Secuencia , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/crecimiento & desarrollo , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Operón , Plancton/genética , Plancton/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tobramicina/farmacología
9.
Appl Microbiol Biotechnol ; 97(20): 8841-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24037308

RESUMEN

The re-emergence of tuberculosis in recent years led the World Health Organization (WHO) to launch the Stop TB Strategy program. Beside repurposing the existing drugs and exploring novel molecular combinations, an essential step to face the burden of tuberculosis will be to develop new drugs by identifying vulnerable bacterial targets. Recent studies have focused on decaprenylphosphoryl-D-ribose oxidase (DprE1) of Mycobacterium tuberculosis, an essential enzyme involved in cell wall metabolism, for which new promising molecules have proved efficacy as antitubercular agents. This review summarizes the state of the art concerning DprE1 in terms of structure, enzymatic activity and inhibitors. This enzyme is emerging as one of the most vulnerable target in M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/antagonistas & inhibidores , Tuberculosis/tratamiento farmacológico , Oxidorreductasas de Alcohol , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Tuberculosis/microbiología
10.
Vaccines (Basel) ; 11(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376428

RESUMEN

The Burkholderia cepacia complex comprises environmental and clinical Gram-negative bacteria that infect particularly debilitated people, such as those with cystic fibrosis. Their high level of antibiotic resistance makes empirical treatments often ineffective, increasing the risk of worst outcomes and the diffusion of multi-drug resistance. However, the discovery of new antibiotics is not trivial, so an alternative can be the use of vaccination. Here, the reverse vaccinology approach has been used to identify antigen candidates, obtaining a short-list of 24 proteins. The localization and different aspects of virulence were investigated for three of them-BCAL1524, BCAM0949, and BCAS0335. The three antigens were localized in the outer membrane vesicles confirming that they are surface exposed. We showed that BCAL1524, a collagen-like protein, promotes bacteria auto-aggregation and plays an important role in virulence, in the Galleria mellonella model. BCAM0949, an extracellular lipase, mediates piperacillin resistance, biofilm formation in Luria Bertani and artificial sputum medium, rhamnolipid production, and swimming motility; its predicted lipolytic activity was also experimentally confirmed. BCAS0335, a trimeric adhesin, promotes minocycline resistance, biofilm organization in LB, and virulence in G. mellonella. Their important role in virulence necessitates further investigations to shed light on the usefulness of these proteins as antigen candidates.

11.
J Am Chem Soc ; 134(2): 912-5, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22188377

RESUMEN

Benzothiazinones (BTZs) are antituberculosis drug candidates with nanomolar bactericidal activity against tubercle bacilli. Here we demonstrate that BTZs are suicide substrates of the FAD-dependent decaprenylphosphoryl-ß-D-ribofuranose 2'-oxidase DprE1, an enzyme involved in cell-wall biogenesis. BTZs are reduced by DprE1 to an electrophile, which then reacts in a near-quantitative manner with an active-site cysteine of DprE1, thus providing a rationale for the extraordinary potency of BTZs. Mutant DprE1 enzymes from BTZ-resistant strains reduce BTZs to inert metabolites while avoiding covalent inactivation. Our results explain the basis for drug sensitivity and resistance to an exceptionally potent class of antituberculosis agents.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Mycobacterium/enzimología , Oxidorreductasas/antagonistas & inhibidores , Antituberculosos/química , Estructura Molecular , Relación Estructura-Actividad
12.
Appl Microbiol Biotechnol ; 94(4): 907-16, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22526781

RESUMEN

Multidrug resistance is a major barrier in the battle against tuberculosis and still a leading cause of death worldwide. In order to fight this pathogen, two routes are practicable: vaccination or drug treatment. Vaccination against Mycobacterium tuberculosis with the current vaccine Mycobacterium bovis Bacillus Calmette-Guerin is partially successful, being its efficacy variable. A few new tuberculosis vaccines are now in various phases of clinical trials. The emergence of multidrug-resistant strains of M. tuberculosis gave the impulse to discover new effective antitubercular drugs, a few of which are in clinical development. Here we focus on three different classes of very promising antitubercular drugs recently discovered (benzothiazinones, dinitrobenzamides, and benzoquinoxalines) that share the same cellular target: a subunit of the heteromeric decaprenylphosphoryl-ß-D: -ribose 2'-epimerase, encoded by the dprE1 (or Rv3790) gene. This enzyme is involved in the biosynthesis of D: -arabinose which is crucial for the synthesis of the mycobacterial cell wall and essential for the pathogen's survival.


Asunto(s)
Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/antagonistas & inhibidores , Racemasas y Epimerasas/antagonistas & inhibidores , Arabinosa/antagonistas & inhibidores , Arabinosa/biosíntesis , Mycobacterium bovis , Mycobacterium tuberculosis/metabolismo , Quinoxalinas/farmacología
13.
Nucleic Acids Res ; 38(12): e134, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20406773

RESUMEN

Tightly regulated gene expression systems represent invaluable tools for studying gene function and for the validation of drug targets in bacteria. While several regulated bacterial promoters have been characterized, few of them have been successfully used in mycobacteria. In this article we describe the development of a novel repressible promoter system effective in both fast- and slow-growing mycobacteria based on two chromosomally encoded repressors, dependent on tetracycline (TetR) and pristinamycin (Pip), respectively. This uniqueness results in high versatility and stringency. Using this method we were able to obtain an ftsZ conditional mutant in Mycobacterium smegmatis and a fadD32 conditional mutant in Mycobacterium tuberculosis, confirming their essentiality for bacterial growth in vitro. This repressible promoter system could also be exploited to regulate gene expression during M. tuberculosis intracellular growth.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Mutación , Operón , Pristinamicina/farmacología , Tetraciclinas/farmacología
14.
Mol Microbiol ; 77(5): 1172-85, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20624223

RESUMEN

Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl-ß-d-ribose 2'-epimerase complex, have been reported recently. Here, we describe the identification and characterization of a novel resistance mechanism to BTZ in Mycobacterium smegmatis. The overexpression of the nitroreductase NfnB leads to the inactivation of the drug by reduction of a critical nitro-group to an amino-group. The direct involvement of NfnB in the inactivation of the lead compound BTZ043 was demonstrated by enzymology, microbiological assays and gene knockout experiments. We also report the crystal structure of NfnB in complex with the essential cofactor flavin mononucleotide, and show that a common amino acid stretch between NfnB and DprE1 is likely to be essential for the interaction with BTZ. We performed docking analysis of NfnB-BTZ in order to understand their interaction and the mechanism of nitroreduction. Although Mycobacterium tuberculosis seems to lack nitroreductases able to inactivate these drugs, our findings are valuable for the design of new BTZ molecules, which may be more effective in vivo.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Nitrorreductasas/química , Nitrorreductasas/metabolismo , Tiazinas/farmacología , Antituberculosos/metabolismo , Cristalografía por Rayos X , Técnicas de Inactivación de Genes , Pruebas de Sensibilidad Microbiana , Nitrorreductasas/genética , Oxidación-Reducción , Estructura Terciaria de Proteína , Tiazinas/metabolismo
15.
Antimicrob Agents Chemother ; 55(5): 1912-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21357299

RESUMEN

The high tolerance of biofilm-grown Burkholderia cepacia complex bacteria against antimicrobial agents presents considerable problems for the treatment of infected cystic fibrosis patients and the implementation of infection control guidelines. In the present study, we analyzed the tolerance of planktonic and sessile Burkholderia cenocepacia J2315 cultures and examined the transcriptional response of sessile cells to treatment with chlorhexidine. At low (0.0005%) and high (0.05%) concentrations, chlorhexidine had a similar effect on both populations, but at intermediate concentrations (0.015%) the antimicrobial activity was more pronounced in planktonic cultures. The exposure of sessile cells to chlorhexidine resulted in an upregulation of the transcription of 469 (6.56%) and the downregulation of 257 (3.59%) protein-coding genes. A major group of upregulated genes in the treated biofilms encoded membrane-related and regulatory proteins. In addition, several genes coding for drug resistance determinants also were upregulated. The phenotypic analysis of RND (resistance-nodulation-division) efflux pump mutants suggests the presence of lifestyle-specific chlorhexidine tolerance mechanisms; efflux system RND-4 (BCAL2820-BCAL2822) was more responsible for chlorhexidine tolerance in planktonic cells, while other systems (RND-3 [BCAL1672-BCAL1676] and RND-9 [BCAM1945-BCAM1947]) were linked to resistance in sessile cells. After sessile cell exposure, multiple genes encoding chemotaxis and motility-related proteins were upregulated in concert with the downregulation of an adhesin-encoding gene (BCAM2143), suggesting that sessile cells tried to escape the biofilm. We also observed the differential expression of 19 genes carrying putative small RNA molecules, indicating a novel role for these regulatory elements in chlorhexidine tolerance.


Asunto(s)
Biopelículas/efectos de los fármacos , Clorhexidina/farmacología , Farmacorresistencia Bacteriana/fisiología , Antiinfecciosos Locales/farmacología , Burkholderia cenocepacia/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
PLoS Pathog ; 5(10): e1000645, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19876393

RESUMEN

A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2' epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Descubrimiento de Drogas/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Racemasas y Epimerasas/antagonistas & inhibidores , Animales , Benzamidas/farmacología , Procesos de Crecimiento Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mycobacterium tuberculosis/enzimología , Análisis de Componente Principal , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
17.
Appl Microbiol Biotechnol ; 92(5): 887-95, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21997606

RESUMEN

Burkholderia cenocepacia is a Gram-negative opportunistic pathogen belonging to the Burkholderia cepacia complex (Bcc). It is spread in a wide range of ecological niches, and in cystic fibrosis patients, it is responsible for serious infections. Its eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. One of the main resistance mechanisms in clinical isolates is represented by efflux systems that are able to extrude a variety of molecules, such as antibiotics, out of the cell. Resistance-Nodulation-Cell Division (RND) efflux pumps are known to be mediators of multidrug resistance in Gram-negative bacteria. Since now, the significance of the RND efflux systems in B. cenocepacia has been partially determined. However, the analysis of the completely sequenced genome of B. cenocepacia J2315 allowed the identification of 16 operons coding for these transporters. We focused our attention on the role of these pumps through the construction of several deletion mutants. Since manipulating B. cenocepacia J2315 genome is difficult, we used a peculiar inactivation system, which enables different deletions in the same strain. The characterization of our mutants through transcriptome and phenotype microarray analysis suggested that RND efflux pumps can be involved not only in drug resistance but also in pathways important for the pathogenesis of this microorganism. The aim of this review is an updated overview on host-pathogen interactions and drug resistance, particularly focused on RND-mediated efflux mechanisms, highlighting the importance of molecular techniques in the study of B. cenocepacia.


Asunto(s)
Infecciones por Burkholderia/microbiología , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/patogenicidad , Fibrosis Quística/complicaciones , Animales , Antibacterianos/farmacología , Infecciones por Burkholderia/etiología , Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/metabolismo , Farmacorresistencia Bacteriana , Técnicas Genéticas , Humanos
18.
BMC Evol Biol ; 10: 164, 2010 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-20525265

RESUMEN

BACKGROUND: The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND) family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i) identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii) analyze their phylogenetic distribution, iii) define the putative function(s) that RND proteins perform within the Burkholderia genus and iv) try tracing the evolutionary history of some of these genes in Burkholderia. RESULTS: BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia) as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins)/heavy-metal (HME proteins)] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE1 systems in the Burkholderia genus. CONCLUSION: A complete knowledge of the presence and distribution of RND proteins in Burkholderia species was obtained and an evolutionary model was depicted. Data presented in this work may serve as a basis for future experimental tests, focused especially on HAE1 proteins, aimed at the identification of novel targets in antimicrobial therapy against Burkholderia species.


Asunto(s)
Burkholderia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Evolución Molecular , Genes MDR , Filogenia , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia de Consenso/genética , Genes Bacterianos , Genoma Bacteriano , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de Proteína
19.
Antimicrob Agents Chemother ; 54(4): 1616-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20086151

RESUMEN

The new antitubercular drug candidate 2-[2-S-methyl-1,4-dioxa-8-azaspiro[4.5]dec-8-yl]-8-nitro-6-(trifluoromethyl)-4H-1,3-benzothiazin-4-one (BTZ043) targets the DprE1 (Rv3790) subunit of the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase. To monitor the potential development of benzothiazinone (BTZ) resistance, a total of 240 sensitive and multidrug-resistant Mycobacterium tuberculosis clinical isolates from four European hospitals were surveyed for the presence of mutations in the dprE1 gene and for BTZ susceptibility. All 240 strains were susceptible, thus establishing the baseline prior to the introduction of BTZ043 in clinical trials.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Compuestos de Espiro/farmacología , Tiazinas/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Secuencia de Bases , Cartilla de ADN/genética , ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple/genética , Europa (Continente) , Genes Bacterianos , Humanos , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Racemasas y Epimerasas/genética
20.
Antibiotics (Basel) ; 9(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255486

RESUMEN

The worldwide spread of antimicrobial resistance highlights the need of new druggable cellular targets. The increasing knowledge of bacterial cell division suggested the potentiality of this pathway as a pool of alternative drug targets, mainly based on the essentiality of these proteins, as well as on the divergence from their eukaryotic counterparts. People suffering from cystic fibrosis are particularly challenged by the lack of antibiotic alternatives. Among the opportunistic pathogens that colonize the lungs of these patients, Burkholderia cenocepacia is a well-known multi-drug resistant bacterium, particularly difficult to treat. Here we describe the organization of its division cell wall (dcw) cluster: we found that 15 genes of the dcw operon can be transcribed as a polycistronic mRNA from mraZ to ftsZ and that its transcription is under the control of a strong promoter regulated by MraZ. B. cenocepacia J2315 FtsZ was also shown to interact with the other components of the divisome machinery, with a few differences respect to other bacteria, such as the direct interaction with FtsQ. Using an in vitro sedimentation assay, we validated the role of SulA as FtsZ inhibitor, and the roles of FtsA and ZipA as tethers of FtsZ polymers. Together our results pave the way for future antimicrobial design based on the divisome as pool of antibiotic cellular targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA