Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Synchrotron Radiat ; 27(Pt 6): 1741-1752, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147203

RESUMEN

THORONDOR is a data treatment software with a graphical user interface (GUI) accessible via the browser-based Jupyter notebook framework. It aims to provide an interactive and user-friendly tool for the analysis of NEXAFS spectra collected during in situ experiments. The program allows on-the-fly representation and quick correction of large datasets from single or multiple experiments. In particular, it provides the possibility to align in energy several spectral profiles on the basis of user-defined references. Various techniques to calculate background subtraction and signal normalization have been made available. In this context, an innovation of this GUI involves the usage of a slider-based approach that provides the ability to instantly manipulate and visualize processed data for the user. Finally, the program is characterized by an advanced fitting toolbox based on the lmfit package. It offers a large selection of fitting routines as well as different peak distributions and empirical ionization potential step edges, which can be used for the fit of the NEXAFS rising-edge peaks. Statistical parameters describing the goodness of a fit such as χ2 or the R-factor together with the parameter uncertainty distributions and the related correlations can be extracted for each chosen model.

2.
Angew Chem Int Ed Engl ; 59(41): 18145-18150, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32648335

RESUMEN

Ti silicates, and in particular, titanium silicalite-1 (TS-1), are nowadays important catalysts for several partial oxidation reactions in the presence of aqueous H2 O2 as an oxidant. Despite the numerous studies dealing with this material, some fundamental aspects are still unclear. In particular, the structure and the catalytic role of defective Ti sites, other than perfect tetrahedral sites recognized as the main active species, has not been quantitatively discussed in the literature. We assess the structural features of defective Ti sites on the basis of outcomes of electronic spectroscopies, as interpreted through quantum mechanical simulation. Strong evidence is disclosed to support the fact that the most common defective Ti sites, often reported in the TS-1 literature, are monomeric Ti centers that are embedded in the zeolite framework, and which have a distorted octahedral local symmetry.

3.
Phys Chem Chem Phys ; 20(27): 18503-18514, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29951670

RESUMEN

We report the synthesis and characterisation of a HY/MgO zeolite/oxide nanocomposite material with high crystallinity and highly dispersed, highly basic MgO sites. Preparation was optimized in order to preserve sample crystallinity, to avoid the formation of mesoporosity and to minimize the formation of separate Mg-containing phases. These features were checked by means of electron microscopy, X-ray powder diffraction, porosimetry and IR spectroscopy. A highly dispersed material was obtained, comprising nanoclusters of magnesium oxide and hydroxide hosted by the microporous zeolite framework. The location and structure of the Mg-containing clusters have been studied by means of a combination of Rietveld refinement of XRPD data and high quality quantum mechanical simulations. The refinement has shown the presence of magnesium and oxygen atoms in the double six-membered ring cages, consistent with the presence of mononuclear Mg moieties. However, the composition and IR spectroscopy demonstrate that other Mg species must exist, likely located in the zeolite pores. In order to propose candidate structures for these species, several hypothetic periodic models of the material were built by placing (MgO)n clusters in different locations of the zeolite structure, taking into account the material composition and other constraints imposed by the experimental observations. Periodic structures with P1 symmetry were optimized at the B3LYP-D*/DZVP level with the CRYSTAL code and classified according to their stability. Two families of possible sites were identified: highly solvated (MgO)n units in narrow cavities and less coordinated clusters in the supercages. The stability of these clusters appears to be regulated by the ability of Mg2+ and O2- ions to interact with the pore walls and by the formation of Mg-OH species as result of the reaction of Mg-O couples with remaining acidic protons. The reactivity of four representative models with CO2 has been simulated at the B3LYP-D*/TZVP level. CO2 forms very stable linear end-on adducts with low coordinated Mg ions in most cases. Isolated sites give rise to bridge bidentate complexes in agreement with previous spectroscopic observations. The formation of hydrogen-carbonates is observed only on specific sites, through a process having a low adsorption energy because of the high deformation of the adsorption site.

4.
Inorg Chem ; 56(23): 14408-14425, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-28976176

RESUMEN

We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H2O, CO, H2S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni2+, which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

5.
J Imaging ; 8(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36286354

RESUMEN

In this work, two historical flutes of the late eighteenth century were analysed by means of X-ray computed tomography (CT). The first one is a piccolo flute whose manufacturer is unknown, though some features could suggest an English or American origin. The second musical instrument is a baroque transverse flute, probably produced by Lorenzo Cerino, an Italian instrument maker active in Turin (Italy) in the late eighteenth century. Analyses carried out provided information on manufacturing techniques, materials and conservation state, and are suitable to plan restoration intervention. In particular, through the CT images, it was possible to observe the presence of defects, cracks, fractures and previous restorations, as well as indications of the tools used in the making of the instruments. Particular attention was directed towards extracting metrological information about the objects. In fact, this work is the first step of a study with a final aim of determining an operative protocol to enable the making of precise-sounding copies of ancient instruments starting from CT images, that can be used to plan a virtual restoration, consisting in the creation of digitally restored copies with a 3D printer.

6.
Phys Chem Chem Phys ; 12(24): 6474-82, 2010 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-20454722

RESUMEN

The adsorption of CO and H(2) at the surface of transitional (gamma and delta) and corundum (alpha) phases of Al(2)O(3) is studied by means of FTIR spectroscopy at temperature variable in the 293-60 K (CO) and 293-20 K (H(2)) intervals with the aims of better clarifying the nature of the surface Lewis centres and evaluate the thermodynamics of the adsorption process.

7.
Inorg Chem ; 48(12): 5439-48, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19499958

RESUMEN

The possibility to modulate Cr(CO)(3) properties by grafting it onto metal-organic framework (MOF) linkers of different natures has been investigated using density functional methods. MOF linkers were modeled using clusters constituted by benzene rings doubly substituted in the para position. The effect of the electron-donor or electron-acceptor nature of benzene substituents on the stability of the (eta(6)-arene)Cr(CO)(3) adduct and on the shift of the CO bands has been considered. Different electron-donor (-NH(2), -CH(3), -OH, -COONa) and electron-acceptor (-F, -COOH, -CN, -CF(3)) substituents have been used and the results compared with the bare benzene. C(6)H(4)(COOZnOH)(2) and C(6)H(4)(Zn(4)O(13)C(6)H(5))(2) clusters have also been adopted as models of the MOF-5 benzene rings. The possibility of modulating the stability and the reactivity of Cr(CO)(3) species by grafting them to MOFs with different organic linkers was verified. In particular, this study indicates that electron-acceptor (e.g., C(6)H(4)(COOH)(2)) substituted MOF linkers facilitate the substitution of CO by incoming molecules, whereas the use of electron-donor ones (e.g., C(6)H(4)(OH)(2)) would improve the stability of the Cr(CO)(3) adduct and the ring acidity. Furthermore, an almost linear dependence of the Cr(CO)(3) binding energies on the calculated structural and vibrational features of the tricarbonyl was found, suggesting that the stability of the Cr(CO)(3) adduct can be inferred experimentally from vibrational and diffraction data. In the end, on the basis of the results obtained, it was possible to successfully explain the experimental shift of the CO IR stretching features of grafted Cr(CO)(3) on the UiO-66, CPO-27-Ni, and MOF-5 aromatic linkers and on the benzene rings of poly(ethylstyrene-co-divinylbenzene). The sign of the Delta nu(CO) shift with respect to C(6)H(6)Cr(CO)(3) has been found to be strongly dependent on higher/lower electron density on the ring.

8.
J Phys Chem A ; 113(52): 14261-9, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19610622

RESUMEN

In this article, we present a computational study of the structure and vibrational properties of the species formed by the interaction between Cr sites of Phillips catalyst and probe molecules (CO, N(2)). The vibrational properties of these surface species, intensively investigated in the past, form a very rich and ideal set of experimental data to test computational approaches. By adopting the X(4)Si(2)O(3)Cr (X = H, OH, F) cluster as a simplified model of the ([triple bond]SiO)(2)Cr(II) species present at the surface of the real catalyst, we found that the B3LYP hybrid functional (containing 20% of Hartree-Fock exchange), when applied to this model, is unable to reproduce with reasonable accuracy the currently available experimental data (principally coming from IR spectroscopy). Better agreement is obtained when the percentage of Hartree-Fock exchange is increased (up to 35-40%).

9.
J Am Chem Soc ; 130(26): 8386-96, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18533719

RESUMEN

The role of exposed metal sites in increasing the H2 storage performances in metal-organic frameworks (MOFs) has been investigated by means of IR spectrometry. Three MOFs have been considered: MOF-5, with unexposed metal sites, and HKUST-1 and CPO-27-Ni, with exposed Cu(2+) and Ni(2+), respectively. The onset temperature of spectroscopic features associated with adsorbed H2 correlates with the adsorption enthalpy obtained by the VTIR method and with the shift experienced by the H-H stretching frequency. This relationship can be ascribed to the different nature and accessibility of the metal sites. On the basis of a pure energetic evaluation, it was observed that the best performance was shown by CPO-27-Ni that exhibits also an initial adsorption enthalpy of -13.5 kJ mol(-1), the highest yet observed for a MOF. Unfortunately, upon comparison of the hydrogen amounts stored at high pressure, the hydrogen capacities in these conditions are mostly dependent on the surface area and total pore volume of the material. This means that if control of MOF surface area can benefit the total stored amounts, only the presence of a great number of strong adsorption sites can make the (P, T) storage conditions more economically favorable. These observations lead to the prediction that efficient H2 storage by physisorption can be obtained by increasing the surface density of strong adsorption sites.

10.
J Phys Chem B ; 109(39): 18237-42, 2005 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16853346

RESUMEN

Hydrogen storage is among the most demanding challenges in the hydrogen-based energy cycle. One proposed strategy for hydrogen storage is based on physisorption on high surface area solids such as metal-organic frameworks (MOFs). Within this class of materials, MOF-5 has been the first structure studied for hydrogen storage. The IR spectroscopy of adsorbed H2 performed at 15 K and ab initio calculations show that the adsorptive properties of this material are mainly due to dispersive interactions with the internal wall structure and to weak electrostatic forces associated with O13Zn4 clusters. Calculated and measured binding enthalpies are between 2.26 and 3.5 kJ/mol, in agreement with the H2 rotational barriers reported in the literature. A minority of binding sites with higher adsorption enthalpy (7.4 kJ/mol) is also observed. These species are probably associated with OH groups on the external surfaces present as termini of the microcrystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA