Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38498758

RESUMEN

This article explores how the ability to recall information in data visualizations depends on the presentation technology. Participants viewed 10 Isotype visualizations on a 2D screen, in 3D, in Virtual Reality (VR) and in Mixed Reality (MR). To provide a fair comparison between the three 3D conditions, we used LIDAR to capture the details of the physical rooms, and used this information to create our textured 3D models. For all environments, we measured the number of visualizations recalled and their order (2D) or spatial location (3D, VR, MR). We also measured the number of syntactic and semantic features recalled. Results of our study show increased recall and greater richness of data understanding in the MR condition. Not only did participants recall more visualizations and ordinal/spatial positions in MR, but they also remembered more details about graph axes and data mappings, and more information about the shape of the data. We discuss how differences in the spatial and kinesthetic cues provided in these different environments could contribute to these results, and reasons why we did not observe comparable performance in the 3D and VR conditions.

2.
IEEE Trans Vis Comput Graph ; 28(1): 944-954, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34587073

RESUMEN

This paper investigates how to make data comics interactive. Data comics are an effective and versatile means for visual communication, leveraging the power of sequential narration and combined textual and visual content, while providing an overview of the storyline through panels assembled in expressive layouts. While a powerful static storytelling medium that works well on paper support, adding interactivity to data comics can enable non-linear storytelling, personalization, levels of details, explanations, and potentially enriched user experiences. This paper introduces a set of operations tailored to support data comics narrative goals that go beyond the traditional linear, immutable storyline curated by a story author. The goals and operations include adding and removing panels into pre-defined layouts to support branching, change of perspective, or access to detail-on-demand, as well as providing and modifying data, and interacting with data representation, to support personalization and reader-defined data focus. We propose a lightweight specification language, COMICSCRIPT, for designers to add such interactivity to static comics. To assess the viability of our authoring process, we recruited six professional illustrators, designers and data comics enthusiasts and asked them to craft an interactive comic, allowing us to understand authoring workflow and potential of our approach. We present examples of interactive comics in a gallery. This initial step towards understanding the design space of interactive comics can inform the design of creation tools and experiences for interactive storytelling.

3.
IEEE Trans Vis Comput Graph ; 16(6): 1090-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20975147

RESUMEN

In many common data analysis scenarios the data elements are logically grouped into sets. Venn and Euler style diagrams are a common visual representation of such set membership where the data elements are represented by labels or glyphs and sets are indicated by boundaries surrounding their members. Generating such diagrams automatically such that set regions do not intersect unless the corresponding sets have a non-empty intersection is a difficult problem. Further, it may be impossible in some cases if regions are required to be continuous and convex. Several approaches exist to draw such set regions using more complex shapes, however, the resulting diagrams can be difficult to interpret. In this paper we present two novel approaches for simplifying a complex collection of intersecting sets into a strict hierarchy that can be more easily automatically arranged and drawn (Figure 1). In the first approach, we use compact rectangular shapes for drawing each set, attempting to improve the readability of the set intersections. In the second approach, we avoid drawing intersecting set regions by duplicating elements belonging to multiple sets. We compared both of our techniques to the traditional non-convex region technique using five readability tasks. Our results show that the compact rectangular shapes technique was often preferred by experimental subjects even though the use of duplications dramatically improves the accuracy and performance time for most of our tasks. In addition to general set representation our techniques are also applicable to visualization of networks with intersecting clusters of nodes.

4.
IEEE Trans Vis Comput Graph ; 16(6): 1182-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20975157

RESUMEN

Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations­multiple line graphs and stacked bar charts­as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

5.
IEEE Trans Vis Comput Graph ; 24(1): 267-277, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866577

RESUMEN

As Visual Analytics (VA) research grows and diversifies to encompass new systems, techniques, and use contexts, gaining a holistic view of analytic practices is becoming ever more challenging. However, such a view is essential for researchers and practitioners seeking to develop systems for broad audiences that span multiple domains. In this paper, we interpret VA research through the lens of Activity Theory (AT)-a framework for modelling human activities that has been influential in the field of Human-Computer Interaction. We first provide an overview of Activity Theory, showing its potential for thinking beyond tasks, representations, and interactions to the broader systems of activity in which interactive tools are embedded and used. Next, we describe how Activity Theory can be used as an organizing framework in the construction of activity typologies, building and expanding upon the tradition of abstract task taxonomies in the field of Information Visualization. We then apply the resulting process to create an activity typology for Visual Analytics, synthesizing a wide range of systems and activity concepts from the literature. Finally, we use this typology as the foundation of an activity-centered design process, highlighting both tensions and opportunities in the design space of VA systems.

6.
Artículo en Inglés | MEDLINE | ID: mdl-30136994

RESUMEN

Visualizing 3D trajectories to extract insights about their similarities and spatial configuration is a critical task in several domains. Air traffic controllers for example deal with large quantities of aircrafts routes to optimize safety in airspace and neuroscientists attempt to understand neuronal pathways in the human brain by visualizing bundles of fibers from DTI images. Extracting insights from masses of 3D trajectories is challenging as the multiple three dimensional lines have complex geometries, may overlap, cross or even merge with each other, making it impossible to follow individual ones in dense areas. As trajectories are inherently spatial and three dimensional, we propose FiberClay: a system to display and interact with 3D trajectories in immersive environments. FiberClay renders a large quantity of trajectories in real time using GP-GPU techniques. FiberClay also introduces a new set of interactive techniques for composing complex queries in 3D space leveraging immersive environment controllers and user position. These techniques enable an analyst to select and compare sets of trajectories with specific geometries and data properties. We conclude by discussing insights found using FiberClay with domain experts in air traffic control and neurology.

7.
IEEE Comput Graph Appl ; 37(3): 6-13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28459667

RESUMEN

As we increasingly rely on data to understand our world, and as problems require global solutions, we need to effectively communicate that data to help people make informed decisions. The special Art on Graphics article explores the potential of data comics and their unique ability to communicate both data and context via compelling visual storytelling.


Asunto(s)
Comunicación , Historietas como Asunto , Ciencia de la Información , Arte , Presentación de Datos , Humanos
8.
IEEE Trans Vis Comput Graph ; 23(9): 2151-2164, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28113509

RESUMEN

There are many ways to visualize event sequences as timelines. In a storytelling context where the intent is to convey multiple narrative points, a richer set of timeline designs may be more appropriate than the narrow range that has been used for exploratory data analysis by the research community. Informed by a survey of 263 timelines, we present a design space for storytelling with timelines that balances expressiveness and effectiveness, identifying 14 design choices characterized by three dimensions: representation, scale, and layout. Twenty combinations of these choices are viable timeline designs that can be matched to different narrative points, while smooth animated transitions between narrative points allow for the presentation of a cohesive story, an important aspect of both interactive storytelling and data videos. We further validate this design space by realizing the full set of viable timeline designs and transitions in a proof-of-concept sandbox implementation that we used to produce seven example timeline stories. Ultimately, this work is intended to inform and inspire the design of future tools for storytelling with timelines.

9.
IEEE Trans Vis Comput Graph ; 23(1): 501-510, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27875166

RESUMEN

Data videos, or short data-driven motion graphics, are an increasingly popular medium for storytelling. However, creating data videos is difficult as it involves pulling together a unique combination of skills. We introduce DataClips, an authoring tool aimed at lowering the barriers to crafting data videos. DataClips allows non-experts to assemble data-driven "clips" together to form longer sequences. We constructed the library of data clips by analyzing the composition of over 70 data videos produced by reputable sources such as The New York Times and The Guardian. We demonstrate that DataClips can reproduce over 90% of our data videos corpus. We also report on a qualitative study comparing the authoring process and outcome achieved by (1) non-experts using DataClips, and (2) experts using Adobe Illustrator and After Effects to create data-driven clips. Results indicated that non-experts are able to learn and use DataClips with a short training period. In the span of one hour, they were able to produce more videos than experts using a professional editing tool, and their clips were rated similarly by an independent audience.

10.
IEEE Trans Vis Comput Graph ; 23(1): 541-550, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27875170

RESUMEN

In this paper, we investigate Confluent Drawings (CD), a technique for bundling edges in node-link diagrams based on network connectivity. Edge-bundling techniques are designed to reduce edge clutter in node-link diagrams by coalescing lines into common paths or bundles. Unfortunately, traditional bundling techniques introduce ambiguity since edges are only bundled by spatial proximity, rather than network connectivity; following an edge from its source to its target can lead to the perception of incorrect connectivity if edges are not clearly separated within the bundles. Contrary, CDs bundle edges based on common sources or targets. Thus, a smooth path along a confluent bundle indicates precise connectivity. While CDs have been described in theory, practical investigation and application to real-world networks (i.e., networks beyond those with certain planarity restrictions) is currently lacking. Here, we provide the first algorithm for constructing CDs from arbitrary directed and undirected networks and present a simple layout method, embedded in a sand box environment providing techniques for interactive exploration. We then investigate patterns and artifacts in CDs, which we compare to other common edge-bundling techniques. Finally, we present the first user study that compares edge-compression techniques, including CD, power graphs, metro-style, and common edge bundling. We found that users without particular expertise in visualization or network analysis are able to read small CDs without difficulty. Compared to existing bundling techniques, CDs are more likely to allow people to correctly perceive connectivity.

11.
IEEE Trans Vis Comput Graph ; 22(9): 2200-13, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26584493

RESUMEN

We present an efficient technique for topology-preserving map deformation and apply it to the visualization of dissimilarity data in a geographic context. Map deformation techniques such as value-by-area cartograms are well studied. However, using deformation to highlight (dis)similarity between locations on a map in terms of their underlying data attributes is novel. We also identify an alternative way to represent dissimilarities on a map through the use of visual overlays. These overlays are complementary to deformation techniques and enable us to assess the quality of the deformation as well as to explore the design space of blending the two methods. Finally, we demonstrate how these techniques can be useful in several-quite different-applied contexts: travel-time visualization, social demographics research and understanding energy flowing in a wide-area power-grid.

12.
IEEE Comput Graph Appl ; 35(5): 84-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26416365

RESUMEN

The authors take a closer look at how the visualization community has discussed visual storytelling and present a visual data storytelling process, incorporating steps involved in finding insights (explore data), turning these insights into a narrative (make a story), and communicating this narrative to an audience (tell a story). They also discuss opportunities for future research in visualization as a storytelling medium in the light of this broader process.

13.
IEEE Trans Vis Comput Graph ; 19(11): 1846-58, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24029905

RESUMEN

We present KelpFusion: a method for depicting set membership of items on a map or other visualization using continuous boundaries. KelpFusion is a hybrid representation that bridges hull techniques such as Bubble Sets and Euler diagrams and line- and graph-based techniques such as LineSets and Kelp Diagrams. We describe an algorithm based on shortest-path graphs to compute KelpFusion visualizations. Based on a single parameter, the shortest-path graph varies from the minimal spanning tree to the convex hull of a point set. Shortest-path graphs aim to capture the shape of a point set and smoothly adapt to sets of varying densities. KelpFusion fills enclosed faces based on a set of simple legibility rules. We present the results of a controlled experiment comparing KelpFusion to Bubble Sets and LineSets. We conclude that KelpFusion outperforms Bubble Sets both in accuracy and completion time and outperforms LineSets in completion time.

14.
IEEE Trans Vis Comput Graph ; 18(12): 2709-18, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26357180

RESUMEN

We present PivotPaths, an interactive visualization for exploring faceted information resources. During both work and leisure, we increasingly interact with information spaces that contain multiple facets and relations, such as authors, keywords, and citations of academic publications, or actors and genres of movies. To navigate these interlinked resources today, one typically selects items from facet lists resulting in abrupt changes from one subset of data to another. While filtering is useful to retrieve results matching specific criteria, it can be difficult to see how facets and items relate and to comprehend the effect of filter operations. In contrast, the PivotPaths interface exposes faceted relations as visual paths in arrangements that invite the viewer to `take a stroll' through an information space. PivotPaths supports pivot operations as lightweight interaction techniques that trigger gradual transitions between views. We designed the interface to allow for casual traversal of large collections in an aesthetically pleasing manner that encourages exploration and serendipitous discoveries. This paper shares the findings from our iterative design-and-evaluation process that included semi-structured interviews and a two-week deployment of PivotPaths applied to a large database of academic publications.

15.
IEEE Trans Vis Comput Graph ; 18(12): 2779-88, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26357187

RESUMEN

Current interfaces for common information visualizations such as bar graphs, line graphs, and scatterplots usually make use of the WIMP (Windows, Icons, Menus and a Pointer) interface paradigm with its frequently discussed problems of multiple levels of indirection via cascading menus, dialog boxes, and control panels. Recent advances in interface capabilities such as the availability of pen and touch interaction challenge us to re-think this and investigate more direct access to both the visualizations and the data they portray. We conducted a Wizard of Oz study to explore applying pen and touch interaction to the creation of information visualization interfaces on interactive whiteboards without implementing a plethora of recognizers. Our wizard acted as a robust and flexible pen and touch recognizer, giving participants maximum freedom in how they interacted with the system. Based on our qualitative analysis of the interactions our participants used, we discuss our insights about pen and touch interactions in the context of learnability and the interplay between pen and touch gestures. We conclude with suggestions for designing pen and touch enabled interactive visualization interfaces.

16.
IEEE Trans Vis Comput Graph ; 17(12): 2259-67, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22034345

RESUMEN

Computing and visualizing sets of elements and their relationships is one of the most common tasks one performs when analyzing and organizing large amounts of data. Common representations of sets such as convex or concave geometries can become cluttered and difficult to parse when these sets overlap in multiple or complex ways, e.g., when multiple elements belong to multiple sets. In this paper, we present a design study of a novel set visual representation, LineSets, consisting of a curve connecting all of the set's elements. Our approach to design the visualization differs from traditional methodology used by the InfoVis community. We first explored the potential of the visualization concept by running a controlled experiment comparing our design sketches to results from the state-of-the-art technique. Our results demonstrated that LineSets are advantageous for certain tasks when compared to concave shapes. We discuss an implementation of LineSets based on simple heuristics and present a study demonstrating that our generated curves do as well as human-drawn ones. Finally, we present two applications of our technique in the context of search tasks on a map and community analysis tasks in social networks.

17.
IEEE Trans Vis Comput Graph ; 17(12): 2508-17, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22034372

RESUMEN

While it is still most common for information visualization researchers to develop new visualizations from a data- or taskdriven perspective, there is growing interest in understanding the types of visualizations people create by themselves for personal use. As part of this recent direction, we have studied a large collection of whiteboards in a research institution, where people make active use of combinations of words, diagrams and various types of visuals to help them further their thought processes. Our goal is to arrive at a better understanding of the nature of visuals that are created spontaneously during brainstorming, thinking, communicating, and general problem solving on whiteboards. We use the qualitative approaches of open coding, interviewing, and affinity diagramming to explore the use of recognizable and novel visuals, and the interplay between visualization and diagrammatic elements with words, numbers and labels. We discuss the potential implications of our findings on information visualization design.

18.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA