Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38747693

RESUMEN

The use of algae as feedstock for industrial purposes, such as in bioethanol production, is desirable. During a search for new agarolytic marine bacteria, a novel Gram-stain-negative, strictly aerobic, and agarolytic bacterium, designated as TS8T, was isolated from algae in the harbour of the island of Susak, Croatia. The cells were rod-shaped and motile. The G+C content of the sequenced genome was 38.6 mol%. Growth was observed at 11-37 °C, with 0.5-13 % (w/v) NaCl, and at pH 6.0-9.0. The main fatty acids were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and C16 : 0. The main respiratory quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Analysis of 16S rRNA gene sequences indicated that the newly isolated strain belongs to the genus Catenovulum. Based on 16S rRNA gene sequence data, strain TS8T is closely related to Catenovulum sediminis D2T (95.7 %), Catenovulum agarivorans YM01T (95.0 %), and Catenovulum maritimum Q1T (93.2 %). Digital DNA-DNA hybridization values between TS8T and the other Catenovulum strains were below 25 %. Based on genotypic, phenotypic, and phylogenetic data, strain TS8T represents a new species of the genus Catenovulum, for which the name Catenovulum adriaticum sp. nov. is proposed. The type strain is TS8T (=DSM 114830T=NCIMB 15451T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Ubiquinona , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Ácidos Grasos/química , Croacia , ADN Bacteriano/genética , Fosfolípidos/química , Fosfolípidos/análisis , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas
2.
Microb Cell Fact ; 23(1): 74, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433206

RESUMEN

BACKGROUND: Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS: In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS: Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.


Asunto(s)
Bacteriocinas , Lactobacillales , Lactococcus lactis , Latilactobacillus sakei , Flujo de Trabajo , Adsorción
3.
Microb Cell Fact ; 22(1): 41, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849884

RESUMEN

BACKGROUND: Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efficient production. RESULTS: Here, we optimized the fermentative production process. Following successful simplification of the production medium, we carefully investigated the impact of dissolved oxygen, pH value, and the presence of bivalent calcium ions on pediocin production. It turned out that the formation of the peptide was strongly supported by an acidic pH of 5.7 and microaerobic conditions at a dissolved oxygen level of 2.5%. Furthermore, elevated levels of CaCl2 boosted production. The IPTG-inducible producer C. glutamicum CR099 pXMJ19 Ptac pedACDCg provided 66 mg L-1 of pediocin PA-1 in a two-phase batch process using the optimized set-up. In addition, the novel constitutive strain Ptuf pedACDCg allowed successful production without the need for IPTG. CONCLUSIONS: The achieved pediocin titer surpasses previous efforts in various microbes up to almost seven-fold, providing a valuable step to further explore and develop this important bacteriocin. In addition to its high biosynthetic performance C. glutamicum proved to be highly robust under the demanding producing conditions, suggesting its further use as host for bacteriocin production.


Asunto(s)
Bacteriocinas , Corynebacterium glutamicum , Pediocinas , Péptidos Antimicrobianos , Calcio , Corynebacterium glutamicum/genética , Isopropil Tiogalactósido , Bacteriocinas/genética , Iones , Concentración de Iones de Hidrógeno
4.
Microb Cell Fact ; 21(1): 11, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033086

RESUMEN

BACKGROUND: The bacteriocin nisin is naturally produced by Lactococcus lactis as an inactive prepeptide that is modified posttranslationally resulting in five (methyl-)lanthionine rings characteristic for class Ia bacteriocins. Export and proteolytic cleavage of the leader peptide results in release of active nisin. By targeting the universal peptidoglycan precursor lipid II, nisin has a broad target spectrum including important human pathogens such as Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains. Industrial nisin production is currently performed using natural producer strains resulting in rather low product purity and limiting its application to preservation of dairy food products. RESULTS: We established heterologous nisin production using the biotechnological workhorse organism Corynebacterium glutamicum in a two-step process. We demonstrate successful biosynthesis and export of fully modified prenisin and its activation to mature nisin by a purified, soluble variant of the nisin protease NisP (sNisP) produced in Escherichia coli. Active nisin was detected by a L. lactis sensor strain with strictly nisin-dependent expression of the fluorescent protein mCherry. Following activation by sNisP, supernatants of the recombinant C. glutamicum producer strain cultivated in standard batch fermentations contained at least 1.25 mg/l active nisin. CONCLUSIONS: We demonstrate successful implementation of a two-step process for recombinant production of active nisin with C. glutamicum. This extends the spectrum of bioactive compounds that may be produced using C. glutamicum to a bacteriocin harboring complex posttranslational modifications. Our results provide a basis for further studies to optimize product yields, transfer production to sustainable substrates and purification of pharmaceutical grade nisin.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Nisina/biosíntesis , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Nisina/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Precursores de Proteínas/biosíntesis , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo
5.
Microb Cell Fact ; 21(1): 236, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368990

RESUMEN

Bacteriocins are ribosomally synthesized antimicrobial peptides, that either kill target bacteria or inhibit their growth. Bacteriocins are used in food preservation and are of increasing interest as potential alternatives to conventional antibiotics. In the present study, we show that Lactococcus petauri B1726, a strain isolated from fermented balsam pear, produces a heat-stable and protease-sensitive compound. Following genome sequencing, a gene cluster for production of a class IId bacteriocin was identified consisting of garQ (encoding for the bacteriocin garvicin Q), garI (for a putative immunity protein), garC, and garD (putative transporter proteins). Growth conditions were optimized for increased bacteriocin activity in supernatants of L. petauri B1726 and purification and mass spectrometry identified the compound as garvicin Q. Further experiments suggest that garvicin Q adsorbs to biomass of various susceptible and insusceptible bacteria and support the hypothesis that garvicin Q requires a mannose-family phosphotransferase system (PTSMan) as receptor to kill target bacteria by disruption of membrane integrity. Heterologous expression of a synthetic garQICD operon was established in Corynebacterium glutamicum demonstrating that genes garQICD are responsible for biosynthesis and secretion of garvicin Q. Moreover, production of garvicin Q by the recombinant C. glutamicum strain was improved by using a defined medium yet product levels were still considerably lower than with the natural L. petauri B1726 producer strain.Collectively, our data identifies the genetic basis for production of the bacteriocin garvicin Q by L. petauri B1726 and provides insights into the receptor and mode of action of garvicin Q. Moreover, we successfully performed first attempts towards biotechnological production of this interesting bacteriocin using natural and heterologous hosts.


Asunto(s)
Bacteriocinas , Humanos , Bacteriocinas/farmacología , Antibacterianos/farmacología , Operón , Bacterias/metabolismo
6.
BMC Genomics ; 22(1): 266, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853520

RESUMEN

BACKGROUND: The pathogen Listeria (L.) monocytogenes is known to survive heat, cold, high pressure, and other extreme conditions. Although the response of this pathogen to pH, osmotic, temperature, and oxidative stress has been studied extensively, its reaction to the stress produced by high pressure processing HPP (which is a preservation method in the food industry), and the activated gene regulatory network (GRN) in response to this stress is still largely unknown. RESULTS: We used RNA sequencing transcriptome data of L. monocytogenes (ScottA) treated at 400 MPa and 8∘C, for 8 min and combined it with current information in the literature to create a transcriptional regulation database, depicting the relationship between transcription factors (TFs) and their target genes (TGs) in L. monocytogenes. We then applied network component analysis (NCA), a matrix decomposition method, to reconstruct the activities of the TFs over time. According to our findings, L. monocytogenes responded to the stress applied during HPP by three statistically different gene regulation modes: survival mode during the first 10 min post-treatment, repair mode during 1 h post-treatment, and re-growth mode beyond 6 h after HPP. We identified the TFs and their TGs that were responsible for each of the modes. We developed a plausible model that could explain the regulatory mechanism that L. monocytogenes activated through the well-studied CIRCE operon via the regulator HrcA during the survival mode. CONCLUSIONS: Our findings suggest that the timely activation of TFs associated with an immediate stress response, followed by the expression of genes for repair purposes, and then re-growth and metabolism, could be a strategy of L. monocytogenes to survive and recover extreme HPP conditions. We believe that our results give a better understanding of L. monocytogenes behavior after exposure to high pressure that may lead to the design of a specific knock-out process to target the genes or mechanisms. The results can help the food industry select appropriate HPP conditions to prevent L. monocytogenes recovery during food storage.


Asunto(s)
Listeria monocytogenes , Listeria , Manipulación de Alimentos , Microbiología de Alimentos , Almacenamiento de Alimentos , Listeria monocytogenes/genética
7.
BMC Genomics ; 22(1): 117, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579201

RESUMEN

BACKGROUND: High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). RESULTS: The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. CONCLUSIONS: We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.


Asunto(s)
Listeria monocytogenes , Microbiología de Alimentos , Industria de Procesamiento de Alimentos , Listeria monocytogenes/genética , Temperatura , Transcriptoma
8.
Metab Eng ; 68: 34-45, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492380

RESUMEN

Bacteriocins are antimicrobial peptides produced by bacteria to inhibit competitors in their natural environments. Some of these peptides have emerged as commercial food preservatives and, due to the rapid increase in antibiotic resistant bacteria, are also discussed as interesting alternatives to antibiotics for therapeutic purposes. Currently, commercial bacteriocins are produced exclusively with natural producer organisms on complex substrates and are sold as semi-purified preparations or crude fermentates. To allow clinical application, efficacy of production and purity of the product need to be improved. This can be achieved by shifting production to recombinant microorganisms. Here, we identify Corynebacterium glutamicum as a suitable production host for the bacteriocin pediocin PA-1. C. glutamicum CR099 shows resistance to high concentrations of pediocin PA-1 and the bacteriocin was not inactivated when spiked into growing cultures of this bacterium. Recombinant C. glutamicum expressing a synthetic pedACDCgl operon releases a compound that has potent antimicrobial activity against Listeria monocytogenes and Listeria innocua and matches size and mass:charge ratio of commercial pediocin PA-1. Fermentations in shake flasks and bioreactors suggest that low levels of dissolved oxygen are favorable for production of pediocin. Under these conditions, however, reduced activity of the TCA cycle resulted in decreased availability of the important pediocin precursor l-asparagine suggesting options for further improvement. Overall, we demonstrate that C. glutamicum is a suitable host for recombinant production of bacteriocins of the pediocin family.


Asunto(s)
Bacteriocinas , Corynebacterium glutamicum , Listeria , Bacteriocinas/genética , Corynebacterium glutamicum/genética , Pediocinas/genética
9.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445321

RESUMEN

Listeria monocytogenes is an important food-borne pathogen and a serious concern to food industries. Bacteriocins are antimicrobial peptides produced naturally by a wide range of bacteria mostly belonging to the group of lactic acid bacteria (LAB), which also comprises many strains used as starter cultures or probiotic supplements. Consequently, multifunctional strains that produce bacteriocins are an attractive approach to combine a green-label approach for food preservation with an important probiotic trait. Here, a collection of bacterial isolates from raw cow's milk was typed by 16S rRNA gene sequencing and MALDI-Biotyping and supernatants were screened for the production of antimicrobial compounds. Screening was performed with live Listeria monocytogenes biosensors using a growth-dependent assay and pHluorin, a pH-dependent protein reporting membrane damage. Purification by cation exchange chromatography and further investigation of the active compounds in supernatants of two isolates belonging to the species Pediococcus acidilactici and Lactococcus garvieae suggest that their antimicrobial activity is related to heat-stable proteins/peptides that presumably belong to the class IIa bacteriocins. In conclusion, we present a pipeline of methods for high-throughput screening of strain libraries for potential starter cultures and probiotics producing antimicrobial compounds and their identification and analysis.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Descubrimiento de Drogas/métodos , Listeria monocytogenes/efectos de los fármacos , Probióticos , Animales , Antibacterianos/biosíntesis , Bacteriocinas/biosíntesis , Lactococcus/aislamiento & purificación , Lactococcus/metabolismo , Microbiota , Leche/microbiología , Pediococcus acidilactici/aislamiento & purificación , Pediococcus acidilactici/metabolismo
10.
BMC Genomics ; 21(1): 455, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32615922

RESUMEN

BACKGROUND: High pressure processing (HPP; i.e. 100-600 MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600 MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance. RESULTS: None of the tested strains were tolerant to 600 MPa. A reduction of more than 5 log10 was observed for all strains after 1 min 600 MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400 MPa for 1 min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains. CONCLUSIONS: L. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.


Asunto(s)
Conservación de Alimentos , Genoma Bacteriano , Listeria monocytogenes/genética , Sistemas CRISPR-Cas , Metilación de ADN , Genómica , Viabilidad Microbiana , Presión , RNA-Seq , Estándares de Referencia
11.
Cell Mol Life Sci ; 76(3): 539-559, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30392041

RESUMEN

Apoptosis is a form of directed programmed cell death with a tightly regulated signalling cascade for the destruction of single cells. MicroRNAs (miRNAs) play an important role as fine tuners in the regulation of apoptotic processes. MiR-493-3p mimic transfection leads to the induction of apoptosis causing the breakdown of mitochondrial membrane potential and the activation of Caspases resulting in the fragmentation of DNA in several ovarian carcinoma cell lines. Ovarian cancer shows with its pronounced heterogeneity a very high death-to-incidence ratio. A target gene analysis for miR-493-3p was performed for the investigation of underlying molecular mechanisms involved in apoptosis signalling pathways. Elevated miR-493-3p levels downregulated the mRNA and protein expression levels of Serine/Threonine Kinase 38 Like (STK38L), High Mobility Group AT-Hook 2 (HMGA2) and AKT Serine/Threonine Kinase 2 (AKT2) by direct binding as demonstrated by luciferase reporter assays. Notably, the protein expression of RAF1 Proto-Oncogene, Serine/Threonine Kinase (RAF1) was almost completely downregulated by miR-493-3p. This interaction, however, was indirect and regulated by STK38L phosphorylation. In addition, RAF1 transcription was diminished as a result of reduced transcription of ETS proto-oncogene 1 (ETS1), another direct target of miR-493-3p. Taken together, our observations have uncovered the apoptosis inducing potential of miR-493-3p through its regulation of multiple target genes participating in the extrinsic and intrinsic apoptosis pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis/genética , Sitios de Unión , Factor de Transcripción E2F5/genética , Femenino , Proteína HMGA2/genética , Humanos , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Proto-Oncogenes Mas , Proteína Proto-Oncogénica c-ets-1/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos
13.
Can J Microbiol ; 63(1): 83-87, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27919161

RESUMEN

Separation of differentially isotope-labeled bacterial RNA by isopycnic density gradient centrifugation is a critical step in RNA-based stable isotope probing analyses, which help to link the structure and function of complex microbial communities. Using isotope-labeled Escherichia coli RNA, we showed that an 8 mL near-vertical rotor performed better than a 2 mL fixed-angle rotor, thereby corroborating current recommendations. Neither increased concentrations of formamide nor urea in the medium improved the separation results using the fixed-angle rotor.


Asunto(s)
Centrifugación por Gradiente de Densidad/métodos , Centrifugación Isopicnica/métodos , Escherichia coli/química , ARN Bacteriano/aislamiento & purificación , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Centrifugación por Gradiente de Densidad/instrumentación , Centrifugación Isopicnica/instrumentación , Escherichia coli/genética , Escherichia coli/metabolismo , Marcaje Isotópico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
14.
Adv Exp Med Biol ; 902: 109-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27161354

RESUMEN

A number of diseases are associated with alterations in the composition of the microbiota of various niches of the human body. Although, in most cases, it is unclear if these alterations are the cause or the consequence of disease, they provide a rationale for therapeutic or prophylactic manipulation of a dysbiotic microbiota. Approaches to manipulate the microbiome include administration of either live bacteria, which are underrepresented in the diseased individual, substances that aim at increasing the populations of these bacteria, or a combination of the two. This chapter summarizes the available data in therapeutic manipulation of a various diseased states including irritable bowel syndrome, inflammatory bowel disease, necrotizing enterocolitis, atopic and allergic diseases, and antibiotic-associated and infectious diarrhoea.


Asunto(s)
Diarrea/terapia , Enterocolitis Necrotizante/terapia , Hipersensibilidad/terapia , Enfermedades Inflamatorias del Intestino/terapia , Síndrome del Colon Irritable/terapia , Probióticos/uso terapéutico , Diarrea/microbiología , Diarrea/patología , Enterocolitis Necrotizante/microbiología , Enterocolitis Necrotizante/patología , Microbioma Gastrointestinal/fisiología , Interacciones Huésped-Patógeno , Humanos , Hipersensibilidad/microbiología , Hipersensibilidad/patología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Intestinos/microbiología , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/patología , Simbiosis/fisiología
15.
Microb Cell Fact ; 14: 199, 2015 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-26655167

RESUMEN

BACKGROUND: Several studies in animal models demonstrated that obligate and facultative anaerobic bacteria of the genera Bifidobacterium, Salmonella, or Clostridium specifically colonize solid tumors. Consequently, these and other bacteria are discussed as live vectors to deliver therapeutic genes to inhibit tumor growth. Therapeutic approaches for cancer treatment using anaerobic bacteria have been investigated in different mouse models. In the present study, solid three-dimensional (3D) multicellular tumor spheroids (MCTS) of the colorectal adenocarcinoma cell line HT-29 were generated and tested for their potential to study prodrug-converting enzyme therapies using bacterial vectors in vitro. RESULTS: HT-29 MCTS resembled solid tumors displaying all relevant features with an outer zone of proliferating cells and hypoxic and apoptotic regions in the core. Upon incubation with HT-29 MCTS, Bifidobacterium bifidum S17 and Salmonella typhimurium YB1 selectively localized, survived and replicated in hypoxic areas inside MCTS. Furthermore, spores of the obligate anaerobe Clostridium sporogenes germinated in these hypoxic areas. To further evaluate the potential of MCTS to investigate therapeutic approaches using bacteria as gene delivery vectors, recombinant bifidobacteria expressing prodrug-converting enzymes were used. Expression of a secreted cytosine deaminase in combination with 5-fluorocytosine had no effect on growth of MCTS due to an intrinsic resistance of HT-29 cells to 5-fluorouracil, i.e. the converted drug. However, a combination of the prodrug CB1954 and a strain expressing a secreted chromate reductase effectively inhibited MCTS growth. CONCLUSIONS: Collectively, the presented results indicate that MCTS are a suitable and reliable model to investigate live bacteria as gene delivery vectors for cancer therapy in vitro.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/genética , Técnicas In Vitro/métodos , Esferoides Celulares/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones
16.
Microbiology (Reading) ; 160(Pt 12): 2561-2582, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25217529

RESUMEN

The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.


Asunto(s)
Adhesinas Bacterianas/análisis , Bacterias/metabolismo , Adhesión Bacteriana , Fenómenos Fisiológicos Bacterianos , Biopolímeros/metabolismo , Enfermedades Transmitidas por los Alimentos/microbiología , Biopelículas/crecimiento & desarrollo
17.
Appl Environ Microbiol ; 80(9): 2842-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24584243

RESUMEN

Bifidobacteria are an important component of the human gastrointestinal microbiota and are frequently used as probiotics. The genetic inaccessibility and lack of molecular tools commonly used in other bacteria have hampered a detailed analysis of the genetic determinants of bifidobacteria involved in their adaptation to, colonization of, and interaction with the host. In the present study, a range of molecular tools were developed that will allow the closing of some of the gaps in functional analysis of bifidobacteria. A number of promoters were tested for transcriptional activity in Bifidobacterium bifidum S17 using pMDY23, a previously published promoter probe vector. The promoter of the gap gene (Pgap) of B. bifidum S17 yielded the highest promoter activity among the promoters tested. Thus, this promoter and the pMDY23 backbone were used to construct a range of vectors for expression of different fluorescent proteins (FPs). Successful expression of cyan fluorescent protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), and mCherry could be shown for three strains representing three different Bifidobacterium spp. The red fluorescent B. bifidum S17/pVG-mCherry was further used to demonstrate application of fluorescent bifidobacteria for adhesion assays and detection in primary human macrophages cultured in vitro. Furthermore, pMGC-mCherry was cloned by combining a chloramphenicol resistance marker and expression of the FP mCherry under the control of Pgap. The chloramphenicol resistance marker of pMGC-mCherry was successfully used to determine gastrointestinal transit time of B. bifidum S17. Moreover, B. bifidum S17/pMGC-mCherry could be detected in fecal samples of mice after oral administration.


Asunto(s)
Infecciones por Bifidobacteriales/microbiología , Bifidobacterium/genética , Rastreo Celular/métodos , Interacciones Huésped-Patógeno , Proteínas Luminiscentes/genética , Animales , Bifidobacterium/fisiología , Femenino , Humanos , Proteínas Luminiscentes/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas
18.
Front Bioeng Biotechnol ; 12: 1408652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933537

RESUMEN

The use of bacteriocins is a promising approach for addressing the immense threat of food-borne and drug-resistant pathogens. In recent years screening platforms for novel bacteriocins using whole-cell biosensors have been established. During screening cell-to-cell heterogeneity is currently neglected but might play a crucial role in signal development of the whole-cell biosensor after bacteriocin exposure. In this study, we explored the temporal dynamics of the signal heterogeneity of the biosensor Listeria innocua LMG2785/pNZpHin2 Lm after nisin exposure using microfluidic single-cell analysis. The results provided novel and detailed insights into the dynamics of cell-to-cell heterogeneity in L. innocua LMG2785/pNZpHin2 Lm at different nisin concentrations with a high spatio-temporal resolution. Furthermore, the formation of subpopulations during bacteriocin exposure was observed. In-depth single-cell tracking even revealed the regeneration of disrupted cells and recovery of pH homeostasis in rare instances. These findings are highly important for the future design and execution of bacteriocin assays and for the interpretation of fluorescence signal development at the population level after exposure to different concentrations of bacteriocins (here, nisin), as well as for obtaining deeper insights into single-cell persistence strategies to quantify the efficacy and efficiency of novel bacteriocins.

19.
J Biol Chem ; 287(1): 357-367, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22102285

RESUMEN

Recently, a putative ATP-binding cassette (ABC) transport system was identified in Bifidobacterium longum NCC2705 that is highly up-regulated during growth on fructose as the sole carbon source. Cloning and expression of the corresponding ORFs (bl0033-0036) result in efficient fructose uptake by bacteria. Sequence analysis reveals high similarity to typical ABC transport systems and suggests that these genes are organized as an operon. Expression of FruE is induced by fructose, ribose, or xylose and is able to bind these sugars with fructose as the preferred substrate. Our data suggest that BL0033-0036 constitute a high affinity fructose-specific ABC transporter of B. longum NCC2705. We thus suggest to rename the coding genes to fruEKFG and the corresponding proteins to FruE (sugar-binding protein), FruK (ATPase subunit), FruF, and FruG (membrane permeases). Furthermore, protein-protein interactions between the components of the transporter complex were determined by GST pulldown and Western blot analysis. This revealed interactions between the membrane subunits FruF and FruG with FruE, which in vivo is located on the external side of the membrane, and with the cytoplasmatic ATPase FruK. This is in line with the proposed model for bacterial ABC sugar transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bifidobacterium/metabolismo , Fructosa/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Bifidobacterium/genética , Bifidobacterium/fisiología , Transporte Biológico , Fructosa/deficiencia , Intestinos/microbiología , Ribosa/metabolismo , Especificidad por Sustrato , Xilosa/metabolismo
20.
Microbiol Spectr ; 11(1): e0175622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36541778

RESUMEN

Genome analysis of Corynebacterium lactis revealed a bacteriocin gene cluster encoding a putative bacteriocin of the linaridin family of ribosomally synthesized and posttranslationally modified peptides (RiPPs). The locus harbors typical linaridin modification enzymes but lacks genes for a decarboxylase and methyltransferase, which is unusual for type B linaridins. Supernatants of Corynebacterium lactis RW3-42 showed antimicrobial activity against Corynebacterium glutamicum. Deletion of the precursor gene crdA clearly linked the antimicrobial activity of the producer strain to the identified gene cluster. Following purification, we observed potent activity of the peptide against Actinobacteria, mainly other members of the genus Corynebacterium, including the pathogenic species Corynebacterium striatum and Corynebacterium amycolatum. Also, low activity against some Firmicutes was observed, but there was no activity against Gram-negative species. The peptide is resilient towards heat but sensitive to proteolytic degradation by trypsin and proteinase K. Analysis by mass spectrometry indicates that corynaridin is processed by cleaving off the leader sequence at a conserved motif and posttranslationally modified by dehydration of all threonine and serin residues, resulting in a monoisotopic mass of 3,961.19 Da. Notably, time-kill kinetics and experiments using live biosensors to monitor membrane integrity suggest bactericidal activity that does not involve formation of pores in the cytoplasmic membrane. As Corynebacterium species are ubiquitous in nature and include important commensals and pathogens of mammalian organisms, secretion of bacteriocins by species of this genus could be a hitherto neglected trait with high relevance for intra- and interspecies competition and infection. IMPORTANCE Bacteriocins are antimicrobial peptides produced by bacteria to fend off competitors in ecological niches and are considered to be important factors influencing the composition of microbial communities. However, bacteriocin production by bacteria of the genus Corynebacterium has been a hitherto neglected trait, although its species are ubiquitous in nature and make up large parts of the microbiome of humans and animals. In this study, we describe and characterize a novel linaridin family bacteriocin from Corynebacterium lactis and show its narrow-spectrum activity, mainly against other actinobacteria. Moreover, we were able to extend the limited knowledge on linaridin bioactivity in general and for the first time describe the bactericidal activity of such a bacteriocin. Interestingly, the peptide, which was named corynaridin, appears bactericidal, but without formation of pores in the bacterial membrane.


Asunto(s)
Actinobacteria , Bacteriocinas , Humanos , Animales , Bacteriocinas/genética , Bacteriocinas/farmacología , Antibacterianos/química , Corynebacterium/genética , Péptidos , Actinobacteria/metabolismo , Bacterias/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA