Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Opt Express ; 30(8): 12294-12307, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472867

RESUMEN

Coupling characteristics between a single mode fiber (SMF) and a waveguide embedded in a glass chip via a graded index fiber (GIF) tip are investigated at a wavelength of 976 nm. The GIF tips comprise a coreless fiber section and a GIF section. A depressed cladding waveguide in a ZBLAN glass chip with a core diameter of 35 µm is coupled with GIF tips that have a range of coreless fiber and GIF lengths. An experimental coupling efficiency as high as 88% is obtained while a numerical simulation predicts 92.9% for the same GIF tip configuration. Since it is measured in the presence of Fresnel reflection, it can be further improved by anti-reflection coating. Additionally, it is demonstrated that a gap can be introduced between the chip waveguide and the GIF tip while maintaining the high coupling efficiency, thus allowing a thin planar optical component to be inserted. The results presented here will enable miniaturization and simplification of photonic chips with integrated waveguides by replacing bulk coupling lenses with integrated optical fibers.

2.
Phys Chem Chem Phys ; 24(10): 6155-6162, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35225305

RESUMEN

The generation of Mn4+ in α-Al2O3:Mn3+ by soft X-ray exposure is demonstrated with a large dynamic range of the X-ray generated Mn4+ luminescence signal, indicating the potential use of α-Al2O3:Mn3+ for multilevel optical data storage. Samples with a range of Mn concentrations (0.05, 0.1, 0.2, 0.4, 0.6 and 1.2 atom%) were prepared via a facile combustion method and the sample with 0.4 atom% was found to display the highest luminescence intensity. The stored information can be read out via the R-lines (2E → 4A2) under ∼470 nm (4A2 → 4T2), or ∼630 nm (4A2 → 2T1) excitation with the latter being preferred since photobleaching is minimized. Interestingly, the Mn4+ valence state can be fully switched back to Mn3+ by blue light exposure (e.g., 462 nm laser diode). The stored information could be repeatedly written and erased, showing no significant deterioration over five consecutive cycles, with less than 5% uncertainty.

3.
Sensors (Basel) ; 22(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35684755

RESUMEN

The rapid development of optofluidic technologies in recent years has seen the need for sensing platforms with ease-of-use, simple sample manipulation, and high performance and sensitivity. Herein, an integrated optofluidic sensor consisting of a pillar array-based open microfluidic chip and caged dye-doped whispering gallery mode microspheres is demonstrated and shown to have potential for simple real-time monitoring of liquids. The open microfluidic chip allows for the wicking of a thin film of liquid across an open surface with subsequent evaporation-driven flow enabling continuous passive flow for sampling. The active dye-doped whispering gallery mode microspheres placed between pillars, avoid the use of cumbersome fibre tapers to couple light to the resonators as is required for passive microspheres. The performance of this integrated sensor is demonstrated using glucose solutions (0.05-0.3 g/mL) and the sensor response is shown to be dynamic and reversible. The sensor achieves a refractive index sensitivity of ~40 nm/RIU, with Q-factors of ~5 × 103 indicating a detection limit of ~3 × 10-3 RIU (~20 mg/mL glucose). Further enhancement of the detection limit is expected by increasing the microsphere Q-factor using high-index materials for the resonators, or alternatively, inducing lasing. The integrated sensors are expected to have significant potential for a host of downstream applications, particularly relating to point-of-care diagnostics.


Asunto(s)
Microfluídica , Refractometría , Acción Capilar , Glucosa , Microesferas
4.
Opt Express ; 29(19): 29982-29995, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614731

RESUMEN

Graded-index optical fiber probes suitable for focusing or collimating the output of an optical fiber at a wavelength of 1.3 µm have become an enabling technology in optical coherence tomography imaging applications for in vivo bioimaging. Such fiber tips however remain uncommon in other photonics applications. This paper provides the first numerical study of graded-index fiber tips covering a broad range of wavelengths spanning from the UV to short-infrared. The wavelength dependency and the influence of probe geometry on performance characteristics such as far-field divergence angle, spot size and working distance are analyzed. The paper yields easily accessible design guidelines for the fabrication of collimating or focusing fiber tips. Fiber collimators have considerable potential for use in free-space systems and could benefit a range of devices such as variable attenuators, dynamic wavelength equalisers and large 3D optical cross-connect switches, whereas focusing fiber tips have applications in high-resolution imaging.

5.
Opt Express ; 29(15): 23549-23557, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614619

RESUMEN

Whispering gallery modes (WGMs) in micro-resonators are of interest due to their high Q-factors. Ultra-thin fiber tapers are widely deployed to couple light into micro-resonators but achieving stable and practical coupling for out-of-lab use remains challenging. Here, a new WGM coupling scheme using an exposed-core silica fiber (ECF) is proposed, which overcomes the challenge of using fragile fiber tapers. Microspheres are deposited onto the exposed channel for excitation via the evanescent field of the fiber's guided modes. The outer jacket of the ECF partially encapsulates the microspheres, protecting them from external physical disturbance. By varying the mode launching conditions in this few-mode ECF, in combination with a Fano resonance effect, we demonstrate a high degree of tunability in the reflection spectrum. Furthermore, we show multi-particle WGM excitation, which could be controlled to occur either simultaneously or separately through controlling the ECF mode launching conditions. This work can bring value towards applications such as optical switches and modulators, multiplexed/distributed biosensing, and multi-point lasing, integrated in a single optical fiber device that avoids fiber post-processing.

6.
Opt Express ; 26(9): 12266-12276, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716139

RESUMEN

Novel approaches for digital data storage are imperative, as storage capacities are drastically being outpaced by the exponential growth in data generation. Optical data storage represents the most promising alternative to traditional magnetic and solid-state data storage. In this paper, a novel and energy efficient approach to optical data storage using rare-earth ion doped inorganic insulators is demonstrated. In particular, the nanocrystalline alkaline earth halide BaFCl:Sm is shown to provide great potential for multilevel optical data storage. Proof-of-concept demonstrations reveal for the first time that these phosphors could be used for rewritable, multilevel optical data storage on the physical dimensions of a single nanocrystal. Multilevel information storage is based on the very efficient and reversible conversion of Sm3+ to Sm2+ ions upon exposure to UV-C light. The stored information is then read-out using confocal optics by employing the photoluminescence of the Sm2+ ions in the nanocrystals, with the signal strength depending on the UV-C fluence used during the write step. The latter serves as the mechanism for multilevel data storage in the individual nanocrystals, as demonstrated in this paper. This data storage platform has the potential to be extended to 2D and 3D memory for storage densities that could potentially approach petabyte/cm3 levels.

7.
Sensors (Basel) ; 18(9)2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30205443

RESUMEN

Whispering gallery mode (WGM) resonators have become increasingly diverse in terms of both architecture and applications, especially as refractometric sensors, allowing for unprecedented levels of sensitivity. However, like every refractometric sensor, a single WGM resonator cannot distinguish temperature variations from changes in the refractive index of the surrounding environment. Here, we investigate how breaking the symmetry of an otherwise perfect fluorescent microsphere, by covering half of the resonator with a high-refractive-index (RI) glue, might enable discrimination of changes in temperature from variations in the surrounding refractive index. This novel approach takes advantage of the difference of optical pathway experienced by WGMs circulating in different equatorial planes of a single microsphere resonator, which induces mode-splitting. We investigated the influence of the surrounding RI of the microsphere on mode-splitting through an evaluation of the sphere's WGM spectrum and quality factor (Q-factor). Our results reveal that the magnitude of the mode-splitting increases as the refractive index contrast between the high-refractive-index (RI) glue and the surrounding environment increases, and that when they are equal no mode-splitting can be seen. Investigating the refractive index sensitivity of the individual sub modes resulting from the mode-splitting unveils a new methodology for RI sensing, and enables discrimination between surrounding refractive index changes and temperature changes, although it comes at the cost of an overall reduced refractive index sensitivity.

8.
Opt Express ; 25(6): 6192-6214, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28380973

RESUMEN

The development of a fast and reliable whispering gallery mode (WGM) simulator capable of generating spectra that are comparable with experiment is an important step forward for designing microresonators. We present a new model for generating WGM spectra for multilayer microspheres, which allows for an arbitrary number of concentric dielectric layers, and any number of embedded dipole sources or uniform distributions of dipole sources to be modeled. The mode excitation methods model embedded nanoparticles, or fluorescent dye coatings, from which normalized power spectra with accurate representation of the mode coupling efficiencies can be derived. In each case, the emitted power is expressed conveniently as a function of wavelength, with minimal computational load. The model makes use of the transfer-matrix approach, incorporating improvements to its stability, resulting in a reliable, general set of formulae for calculating whispering gallery mode spectra. In the specific cases of the dielectric microsphere and the single-layer coated microsphere, our model simplifies to confirmed formulae in the literature.

9.
Anal Chem ; 88(7): 4036-40, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26954108

RESUMEN

Biosensing within complex biological samples requires a sensor that can compensate for fluctuations in the signal due to changing environmental conditions and nonspecific binding events. To achieve this, we developed a novel self-referenced biosensor consisting of two almost identically sized dye-doped polystyrene microspheres placed on adjacent holes at the tip of a microstructured optical fiber (MOF). Here self-referenced biosensing is demonstrated with the detection of Neutravidin in undiluted, immunoglobulin-deprived human serum samples. The MOF allows remote excitation and collection of the whispering gallery modes (WGMs) of the microspheres while also providing a robust and easy to manipulate dip-sensing platform. By taking advantage of surface functionalization techniques, one microsphere acts as a dynamic reference, compensating for nonspecific binding events and changes in the environment (such as refractive index and temperature), while the other microsphere is functionalized to detect a specific interaction. The almost identical size allows the two spheres to have virtually identical refractive index sensitivity and surface area, while still having discernible WGM spectra. This ensures their responses to nonspecific binding and environmental changes are almost identical, whereby any specific changes, such as binding events, can be monitored via the relative movement between the two sets of WGM peaks.


Asunto(s)
Avidina/sangre , Técnicas Biosensibles , Fibras Ópticas , Humanos , Microesferas , Poliestirenos/química , Termodinámica
10.
Opt Express ; 24(8): 8832-47, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137317

RESUMEN

This paper examines the opportunities existing for engineering dispersion in non-silica whispering gallery mode microbubble resonators, for applications such as optical frequency comb generation. More specifically, the zero dispersion wavelength is analyzed as a function of microbubble diameter and wall thickness for several different material groups such as highly-nonlinear soft glasses, polymers and crystalline materials. The zero dispersion wavelength is shown to be highly-tunable by changing the thickness of the shell. Using certain materials it is shown that dispersion equalization can be realized at interesting wavelengths such as deep within the visible or mid-infrared, opening up new possibilities for optical frequency comb generation. This study represents the first extensive analysis of the prospects of using non-silica microbubbles for nonlinear optics.

11.
Opt Express ; 24(12): 12466-77, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410267

RESUMEN

This paper demonstrates lasing of the whispering gallery modes in polymer coated optofluidic capillaries and their application to refractive index sensing. The laser gain medium used here is fluorescent Nile Red dye, which is embedded inside the high refractive index polymer coating. We investigate the refractometric sensing properties of these devices for different coating thicknesses, revealing that the high Q factors required to achieve low lasing thresholds can only be realized for relatively thick polymer coatings (in this case ≥ 800 nm). Lasing capillaries therefore tend to have a lower refractive index sensitivity, compared to non-lasing capillaries which can have a thinner polymer coating, due to the stronger WGM confinement within the polymer layer. However we find that the large improvement in signal-to-noise ratio realized for lasing capillaries more than compensates for the decreased sensitivity and results in an order-of-magnitude improvement in the detection limit for refractive index sensing.

12.
Opt Lett ; 41(6): 1257-60, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26977683

RESUMEN

We explore the scope for engineering dispersion in whispering gallery mode silica microbubbles for nonlinear applications, such as optical frequency comb generation. In particular, the zero dispersion wavelength is shown to be highly tunable by changing the thickness of the shell. Using a small diameter and small wall thickness, dispersion equalization within the visible is predicted. This opens up the possibility of realizing visible frequency combs for a range of different applications.


Asunto(s)
Microburbujas , Fenómenos Ópticos , Dióxido de Silicio , Absorción de Radiación
13.
Opt Express ; 23(11): 14784-95, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072837

RESUMEN

This paper evaluates the opportunities for using materials other than silica for optical frequency comb generation in whispering gallery mode microsphere resonators. Different materials are shown to satisfy the requirement of dispersion compensation in interesting spectral regions such as the visible or mid-infrared and for smaller microspheres. This paper also analyses the prospects of comb generation in microspheres within aqueous solution for potential use in applications such as biosensing. It is predicted that to achieve comb generation with microspheres in aqueous solution the visible low-loss wavelength window of water needs to be exploited. This is because efficient comb generation necessitates ultra-high Q-factors, which are only possible for cavities with low absorption of the evanescent field outside the cavity. This paper explores the figure of merit for nonlinear interaction efficiency and the potential for dispersion compensation at unique wavelengths for a host of microsphere materials and dimensions and in different surroundings.

14.
Opt Express ; 23(22): 28896-904, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561158

RESUMEN

This paper investigates the Q-factor limits imposed on the far-field detection of the whispering gallery modes of active microspherical resonators. It is shown that the Q-factor measured for a given active microsphere in the far-field using a microscope is significantly lower than that measured using evanescent field collection through a taper. The discrepancy is attributed to the inevitable small asphericity of microspheres that results in mode-splitting which becomes unresolvable in the far-field. Analytic expressions quantifying the Q-factor limits due to small levels of asphericity are subsequently derived.

15.
Opt Express ; 23(15): 18888-96, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367552

RESUMEN

Directional mode coupling in an asymmetric holey fiber coupler is demonstrated both numerically and experimentally for the first time. The holey fiber mode couplers have interesting spectral characteristics and are also found to exhibit increased dimensional tolerances. Following a design based on numerical investigations, a dual-core polymer holey fiber coupler for LP(01) and LP(11) mode multiplexing was fabricated via a drilling and drawing technique. The measurements are compared with the simulation results.

16.
Opt Express ; 23(8): 9924-37, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969034

RESUMEN

A full three-dimensional Finite-Difference Time-Domain (FDTD)-based toolkit is developed to simulate the whispering gallery modes of a microsphere in the vicinity of a dipole source. This provides a guide for experiments that rely on efficient coupling to the modes of microspheres. The resultant spectra are compared to those of analytic models used in the field. In contrast to the analytic models, the FDTD method is able to collect flux from a variety of possible collection regions, such as a disk-shaped region. The customizability of the technique allows one to consider a variety of mode excitation scenarios, which are particularly useful for investigating novel properties of optical resonators, and are valuable in assessing the viability of a resonator for biosensing.

17.
J Phys Chem A ; 119(24): 6252-6, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25984960

RESUMEN

We demonstrate that exposure of nanocrystalline BaFCl:Sm(3+) X-ray storage phosphor to blue laser pulses with peak power densities on the order of 10 GW/cm(2) results in conversion of Sm(3+) to Sm(2+). This photoreduction is found to be strongly power-dependent with an initial fast rate, followed by a slower rate. The photoreduction appears to be orders of magnitude more efficient than that for previously reported systems, and it is estimated that up to 50% of the samarium ions can be photoreduced to the divalent state. The main mechanism is most likely based on multiphoton electron-hole creation, followed by subsequent trapping of the electrons in the conduction band at the Sm(3+) centers. Nanocrystalline BaFCl:Sm(3+) is an efficient photoluminescent X-ray storage phosphor with possible applications as dosimetry probes, and the present study shows for the first time that the power levels of the blue light have to be kept relatively low to avoid the generation of Sm(2+) in the readout process. A system comprising the BaFCl:Sm(3+) nanocrystallites embedded into a glass is also envisioned for 3D memory applications.

18.
Opt Express ; 22(24): 29855-61, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25606915

RESUMEN

We report the design and fabrication of three-dimensional integrated mode couplers operating in the C-band. These mode-selective couplers were inscribed into a boro-aluminosilicate photonic chip using the femtosecond laser direct-write technique. Horizontally and vertically written two-core couplers are shown to allow for the multiplexing of the LP11a and LP11b spatial modes of an optical fiber, respectively, with excellent mode extinction ratios (25-37 + dB) and low loss (~1 dB) between 1500 and 1580 nm. Furthermore, optimized fabrication parameters enable coupling ratios close to 100%. When written in sequence, the couplers allow for the multiplexing of all LP01, LP11a and LP11b modes. This is also shown to be possible using a single 3-dimensional three-core coupler. These integrated mode couplers have considerable potential to be used in mode-division multiplexing for increasing optical fiber capacity. The three-dimensional capability of the femtosecond direct-write technique provides the versatility to write linear cascades of such two- and three-core couplers into a single compact glass chip, with arbitrary routing of waveguides to ensure a small footprint. This technology could be used for high-performance, compact and cost-effective multiplexing of large numbers of modes of an optical fiber.


Asunto(s)
Óptica y Fotónica/instrumentación , Procesamiento de Imagen Asistido por Computador , Microscopía , Factores de Tiempo
19.
ACS Appl Mater Interfaces ; 16(9): 12042-12051, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38382003

RESUMEN

Rapid detection of pathogens and analytes at the point of care offers an opportunity for prompt patient management and public health control. This paper reports an open microfluidic platform coupled with active whispering gallery mode (WGM) microsphere resonators for the rapid detection of influenza viruses. The WGM microsphere resonators, precoated with influenza A polyclonal antibodies, are mechanically trapped in the open micropillar array, where the evaporation-driven flow continuously transports a small volume (∼µL) of sample to the resonators without auxiliaries. Selective chemical modification of the pillar array changes surface wettability and flow pattern, which enhances the detection sensitivity of the WGM resonator-based virus sensor. The optofluidic sensing platform is able to specifically detect influenza A viruses within 15 min using a few microliters of sample and displays a linear response to different virus concentrations.


Asunto(s)
Técnicas Biosensibles , Humanos , Microesferas
20.
Opt Express ; 21(4): 4017-26, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23481936

RESUMEN

We demonstrate for the first time the use of digital range-gating in OFDR to allow for orders of magnitude reduction in the required sampling rates. This allows for sensing over long lengths of fiber with fast sweeps of the optical source frequency, without requiring impractical sampling rates. The range-gating is achieved using digitally enhanced interferometry (DI), which isolates individual sections of OFDR signal bandwidth. The reductions in sampling rates permitted by the bandwidth-division are demonstrated both numerically and experimentally.


Asunto(s)
Fotometría/métodos , Procesamiento de Señales Asistido por Computador , Telecomunicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA