Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612927

RESUMEN

Drug efflux transporters of the ATP-binding-cassette superfamily play a major role in the availability and concentration of drugs at their site of action. ABCC2 (MRP2) and ABCG2 (BCRP) are among the most important drug transporters that determine the pharmacokinetics of many drugs and whose overexpression is associated with cancer chemoresistance. ABCC2 and ABCG2 expression is frequently altered during treatment, thus influencing efficacy and toxicity. Currently, there are no routine approaches available to closely monitor transporter expression. Here, we developed and validated a UPLC-MS/MS method to quantify ABCC2 and ABCG2 in extracellular vesicles (EVs) from cell culture and plasma. In this way, an association between ABCC2 protein levels and transporter activity in HepG2 cells treated with rifampicin and hypericin and their derived EVs was observed. Although ABCG2 was detected in MCF7 cell-derived EVs, the transporter levels in the vesicles did not reflect the expression in the cells. An analysis of plasma EVs from healthy volunteers confirmed, for the first time at the protein level, the presence of both transporters in more than half of the samples. Our findings support the potential of analyzing ABC transporters, and especially ABCC2, in EVs to estimate the transporter expression in HepG2 cells.


Asunto(s)
Vesículas Extracelulares , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Cromatografía Liquida , Proteínas de Neoplasias/genética , Espectrometría de Masas en Tándem , Proteínas de Transporte de Membrana
2.
J Am Soc Nephrol ; 32(5): 1210-1226, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33782168

RESUMEN

BACKGROUND: Urinary extracellular vesicles (uEVs) are a promising source for biomarker discovery, but optimal approaches for normalization, quantification, and characterization in spot urines are unclear. METHODS: Urine samples were analyzed in a water-loading study, from healthy subjects and patients with kidney disease. Urine particles were quantified in whole urine using nanoparticle tracking analysis (NTA), time-resolved fluorescence immunoassay (TR-FIA), and EVQuant, a novel method quantifying particles via gel immobilization. RESULTS: Urine particle and creatinine concentrations were highly correlated in the water-loading study (R2 0.96) and in random spot urines from healthy subjects (R2 0.47-0.95) and patients (R2 0.41-0.81). Water loading reduced aquaporin-2 but increased Tamm-Horsfall protein (THP) and particle detection by NTA. This finding was attributed to hypotonicity increasing uEV size (more EVs reach the NTA size detection limit) and reducing THP polymerization. Adding THP to urine also significantly increased particle count by NTA. In both fluorescence NTA and EVQuant, adding 0.01% SDS maintained uEV integrity and increased aquaporin-2 detection. Comparison of intracellular- and extracellular-epitope antibodies suggested the presence of reverse topology uEVs. The exosome markers CD9 and CD63 colocalized and immunoprecipitated selectively with distal nephron markers. Conclusions uEV concentration is highly correlated with urine creatinine, potentially replacing the need for uEV quantification to normalize spot urines. Additional findings relevant for future uEV studies in whole urine include the interference of THP with NTA, excretion of larger uEVs in dilute urine, the ability to use detergent to increase intracellular-epitope recognition in uEVs, and CD9 or CD63 capture of nephron segment-specific EVs.


Asunto(s)
Vesículas Extracelulares/metabolismo , Enfermedades Renales/diagnóstico , Enfermedades Renales/orina , Adulto , Biomarcadores/orina , Estudios de Casos y Controles , Creatinina/orina , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Urinálisis
3.
Toxicol Appl Pharmacol ; 426: 115636, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214573

RESUMEN

Paraquat (PQ), an herbicide widely used in agriculture, is considered a highly toxic compound. In hepatocytes, P-glycoprotein (P-gp/Abcb1) is a canalicular transporter involved in PQ extrusion from the cell. Previously, we demonstrated that genistein (GNT) induces P-gp in rat liver. In this study, the protective role of GNT pretreatment towards hepatic damage in a model of acute intoxication with PQ in rats, was investigated. Wistar rats were randomized in 4 groups: Control, GNT (5 mg/kg/day sc, 4 days), PQ (50 mg/kg/day ip, last day) and GNT+ PQ. Hepatic lipoperoxidation (LPO) was evaluated by the thiobarbituric acid reactive substances method. Hepatic levels of 4-hydroxynonenal protein adducts (4-HNEp-add) and glutathione-S-transferase alpha (GSTα) protein expression were evaluated by Western blotting. Hepatic glutathione levels and plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Biliary excretion of PQ was studied in vivo and in isolated perfused liver. PQ was quantified by HPLC. PQ significantly increased AST and ALT activities, malondialdehyde and 4-HNEp-add levels, whereby pretreatment with GNT ameliorated this effect. PQ biliary excretion remained unchanged after treatments in both experimental models. Hepatic GSTα expression was augmented in GNT group. GNT pretreatment increased hepatic glutathione levels in PQ + GNT group. These results agree with the lower content of 4-HNEp-adds in GNT + PQ group respect to PQ group. Unexpectedly, increased activity of P-gp did not enhance PQ biliary excretion. Thus, GNT protective mechanism is likely through the induction of GSTα which results in increased 4-HNE metabolism before formation of protein adducts.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Genisteína/uso terapéutico , Sustancias Protectoras/uso terapéutico , Alanina Transaminasa/sangre , Aldehídos/metabolismo , Animales , Aspartato Aminotransferasas/sangre , Bilis/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Genisteína/farmacología , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Herbicidas , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Paraquat , Sustancias Protectoras/farmacología , Ratas Wistar
4.
Pharmacol Res ; 163: 105251, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065282

RESUMEN

The extensive intestinal surface offers an advantage regarding nutrient, ion and water absorptive capacity but also brings along a high exposition to xenobiotics, including drugs of therapeutic use and food contaminants. After absorption of these compounds by the enterocytes, apical ABC transporters play a key role in secreting them back to the intestinal lumen, hence acting as a transcellular barrier. Rapid and reversible modulation of their activity is a subject of increasing interest for pharmacologists. On the one hand, a decrease in transporter activity may result in increased absorption of therapeutic agents given orally. On the other hand, an increase in transporter activity would decrease their absorption and therapeutic efficacy. Although of less relevance, apical ABC transporters also contribute to disposition of drugs systemically administered. This review article summarizes the present knowledge on the mechanisms aimed to rapidly regulate the activity of the main apical ABC transporters of the gut: multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). Regulation of these mechanisms by drugs, drug delivery systems, drug excipients and nutritional components are particularly considered. This information could provide the basis for controlled regulation of bioavailability of therapeutic agents and at the same time would help to prevent potential drug-drug interactions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Tracto Gastrointestinal/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Disponibilidad Biológica , Humanos
5.
J Recept Signal Transduct Res ; 39(5-6): 451-459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31771390

RESUMEN

MicroRNAs are short noncoding RNAs of about 19-25 nucleotides that usually target the 3' untranslated regions of mRNAs thus mediating post-transcriptional regulation of gene expression. Previous data indicate a role for miR-148a in the regulation of the pregnane X receptor (PXR/NR1I2), a nuclear receptor that regulates the expression of drug transporters like P-glycoprotein (P-gp/ABCB1). Our study investigated the effect of miR-148a on the post-transcriptional regulation of PXR and its target gene ABCB1 in oropharyngeal cancer cell lines (OPSCC). miR-148a was over-expressed and knocked-down in three OPSCC cell lines (HNO41, HNO206, and HNO413) by transfection with miR-148a mimic and miR-148a antagomir, respectively. Expression of miR-148a, NR1I2, and ABCB1 mRNA was quantified via real-time qPCR, protein expression of PXR was assessed by immunoblotting. Transfection of miR-148a mimic led to increased miR-148a levels in all cell lines and transfection of miR-148a antagomir reduced miR-148a expression in HNO206 and HNO413. Whereas these changes had no significant effect on PXR mRNA expression, protein expression was reduced in HNO41 by transfection with miR-148a and increased in HNO413 by transfection with miR-148a antagomir. Transfection of miR-148a downregulated ABCB1 mRNA in all cell lines, whereas antagonizing miR-148a had no significant effect. Our data demonstrate a modulation of PXR/NR1I2 and ABCB1 expression in OPSCC by miR-148a, however the effect was not uniform in all cell lines and depended on the range of expression of miR-148 and the genotype of rs1054190 SNP in NR1I2 3'UTR. Thus, our findings argue against an unequivocal association between miR-148a and PXR levels in OPSCC.


Asunto(s)
MicroARNs/genética , Neoplasias Orofaríngeas/genética , Receptor X de Pregnano/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Antagomirs/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Genotipo , Humanos , MicroARNs/antagonistas & inhibidores , Neoplasias Orofaríngeas/patología , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , Transfección
6.
Eur J Nutr ; 58(1): 139-150, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29101532

RESUMEN

PURPOSE: The soy isoflavone genistein has been described to up-regulate breast cancer resistance protein (BCRP) and, thus, enhance chemoresistance in breast cancer cells. The aim of this work was to assess the effect of long- and short-term incubation with daidzein, the second most abundant soy isoflavone and its metabolite equol on the expression and activity of P-glycoprotein, multidrug resistance-associated proteins 1 and 2 (MRP1 and MRP2) and BCRP in breast cancer cells. METHODS: MCF-7 and MDA-MB-231 cells were treated with phytoestrogen concentrations within the range achieved in individuals with a high isoflavone intake. Transporter expression was evaluated at protein and mRNA level through western blot and qRT-PCR, respectively. Transporter activity was determined using doxorubicin, mitoxantrone and carboxy-dichlorofluorescein as substrates. RESULTS: Daidzein (5 µM) up-regulated MRP2- and down-regulated MRP1 protein expressions in MCF-7 and MDA-MB-231 cells, respectively. Both effects were ER-dependent, as determined using the antagonist ICI 182,780. The decrease in MRP1 mRNA in MDA-MB-231 cells indicates a transcriptional mechanism. On the contrary, MRP2 induction in MCF-7 cells takes place post-transcriptionally. Whereas changes in the transporter expression had a minor effect on the transporter activity, acute incubation with daidzein, R-equol and S-equol led to a strong inhibition of BCRP activity and an increase in the IC50 of BCRP substrates. CONCLUSIONS: In contrast to previous reports for genistein, daidzein and equol do not provoke a major up-regulation of the transporter expression but instead an inhibition of BCRP activity and sensitization to BCRP substrates.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Equol/farmacología , Isoflavonas/farmacología , Proteínas de Neoplasias/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Western Blotting , Neoplasias de la Mama/genética , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Equol/metabolismo , Humanos , Isoflavonas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fitoestrógenos/metabolismo , Fitoestrógenos/farmacología , Reacción en Cadena de la Polimerasa , Regulación hacia Arriba/efectos de los fármacos
7.
Arch Toxicol ; 92(2): 777-788, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29052767

RESUMEN

Multidrug resistance-associated protein 2 (MRP2) is an ATP-dependent transporter expressed at the brush border membrane of the enterocyte that confers protection against absorption of toxicants from foods or bile. Acute, short-term regulation of intestinal MRP2 activity involving changes in its apical membrane localization was poorly explored. We evaluated the effects of dibutyryl-cAMP (db-cAMP), a permeable analog of cAMP, and estradiol-17ß-D-glucuronide (E217G), an endogenous derivative of estradiol, on MRP2 localization and activity using isolated rat intestinal sacs and Caco-2 cells, a model of human intestinal epithelium. Changes in MRP2 localization were studied by Western blotting of plasma membrane (PM) vs. intracellular membrane (IM) fractions in both experimental models, and additionally, by confocal microscopy in Caco-2 cells. After 30 min of exposure, db-cAMP-stimulated sorting of MRP2 from IM to PM both in rat jejunum and Caco-2 cells at 10 and 100 µM concentrations, respectively, with increased excretion of the model substrate 2,4-dinitrophenyl-S-glutathione. In contrast, E217G (400 µM) induced internalization of MRP2 together with impairment of transport activity. Confocal microscopy analysis performed in Caco-2 cells confirmed Western blot results. In the particular case of E217G, MRP2 exhibited an unusual pattern of staining compatible with endocytic vesiculation. Use of selective inhibitors demonstrated the participation of cAMP-dependent protein kinase and classic calcium-dependent protein kinase C in db-cAMP and E217G effects, respectively. We conclude that localization of MRP2 in intestine may be subjected to a dynamic equilibrium between plasma membrane and intracellular domains, thus allowing for rapid regulation of MRP2 function.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Bucladesina/farmacología , Estradiol/análogos & derivados , Mucosa Intestinal/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Animales , Células CACO-2 , Membrana Celular/metabolismo , AMP Cíclico , Estradiol/farmacología , Humanos , Mucosa Intestinal/metabolismo , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Ratas , Ratas Wistar
8.
Toxicol Appl Pharmacol ; 315: 12-22, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27899278

RESUMEN

Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación/prevención & control , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Nitroimidazoles/farmacología , Sepsis/tratamiento farmacológico , Tripanocidas/farmacología , Animales , Antioxidantes/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Nitroimidazoles/uso terapéutico , Estrés Oxidativo , Receptor Toll-Like 4/metabolismo , Tripanocidas/uso terapéutico
9.
Toxicol Appl Pharmacol ; 303: 45-57, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27155371

RESUMEN

The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Xenobióticos/farmacología , Animales , Receptor de Androstano Constitutivo , Humanos , Mucosa Intestinal/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química
10.
Toxicol Appl Pharmacol ; 304: 90-8, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27180241

RESUMEN

Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200µM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3h of exposure, returning to normality at 24h. Additionally, BZL increased glutathione peroxidase activity at 12h and the oxidized glutathione/total glutathione (GSSG/GSSG+GSH) ratio that reached a peak at 24h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG+GSH returned to control values at 48h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48h, explaining normalization of GSSG/GSSG+GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Factor 2 Relacionado con NF-E2 , Nitroimidazoles , Estrés Oxidativo , Tripanocidas , Animales , Humanos , Masculino , Ratones , Disulfuro de Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Células Hep G2 , Ratones Endogámicos C57BL , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/biosíntesis , Factor 2 Relacionado con NF-E2/biosíntesis , Nitroimidazoles/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , ARN Interferente Pequeño/efectos de los fármacos , Tripanocidas/farmacología
11.
Toxicol Appl Pharmacol ; 287(2): 178-190, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26049102

RESUMEN

The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 µM) for 48 h exhibited a dose-response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Glutatión Transferasa/biosíntesis , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/biosíntesis , Proteína de Unión a CREB/metabolismo , Células CACO-2 , Colforsina/farmacología , Dinitroclorobenceno/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Factor de Transcripción AP-1/metabolismo
12.
Biochem Pharmacol ; 230(Pt 1): 116555, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332691

RESUMEN

The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), a member of a conserved family of single-stranded RNA-binding proteins (IGF2BP1-3), is expressed in a broad range of fetal tissues, placenta and more than sixteen cancer types but only in a limited number of normal adult tissues. IGF2BP1is required for the transport from nucleus to cytoplasm of certain mRNAs that play essential roles in embryogenesis, carcinogenesis, and multidrug resistance (MDR), by affecting their stability, translation, or localization. The purpose of this review is to gather and present information on MDR mechanisms in cancer and the significance of IGF2BP1 in this context. Within this review, we will provide an overview of IGF2BP1, including its tissue distribution, expression, molecular targets in the context of tumorigenesis and its inhibitors. Our main focus will be on elucidating the interplay between IGF2BP1 and MDR, particularly with regard to chemoresistance mediated by ABC transporters.

13.
Life (Basel) ; 13(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37629602

RESUMEN

Drug-metabolizing enzymes (DMEs) and transporters play a major role in drug efficacy and safety. They are regulated at multiple levels and by multiple factors. Estimating their expression and activity could contribute to predicting drug pharmacokinetics and their regulation by drugs or pathophysiological situations. Determining the expression of these proteins in the liver, intestine, and kidney requires the collection of biopsy specimens. Instead, the isolation of extracellular vesicles (EVs), which are nanovesicles released by most cells and present in biological fluids, could deliver this information in a less invasive way. In this article, we review the use of EVs as surrogates for the expression and activity of DMEs, uptake, and efflux transporters. Preliminary evidence has been provided for a correlation between the expression of some enzymes and transporters in EVs and the tissue of origin. In some cases, data obtained in EVs reflect the induction of phase I-DMEs in the tissues. Further studies are required to elucidate to what extent the regulation of other DMEs and transporters in the tissues reflects in the EV cargo. If an association between tissues and their EVs is firmly established, EVs may represent a significant advancement toward precision therapy based on the biotransformation and excretion capacity of each individual.

14.
Life (Basel) ; 13(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37629489

RESUMEN

Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell-cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes. In this article, we review the scientific evidence addressing the regulation of ABC transporters by EV-mediated cell-cell communication. MDR transfer from drug-resistant to drug-sensitive cells has been identified in several tumor entities. This was attributed, in some cases, to the direct shuttle of transporter molecules or its coding mRNA between cells. Also, EV-mediated transport of regulatory proteins (e.g., transcription factors) and noncoding RNAs have been indicated to induce MDR. Conversely, the transfer of a drug-sensitive phenotype via EVs has also been reported. Additionally, interactions between non-tumor cells and the tumor cells with an impact on MDR are presented. Finally, we highlight uninvestigated aspects and possible approaches to exploiting this knowledge toward the identification of druggable processes and molecules and, ultimately, the development of novel therapeutic strategies.

15.
Cells ; 10(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34831358

RESUMEN

The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Receptor X de Pregnano/metabolismo , Animales , Enfermedad , Salud , Humanos , Ligandos , Unión Proteica , Transcripción Genética
16.
Life Sci ; 287: 119936, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34506838

RESUMEN

AIM: P-glycoprotein (P-gp) plays a critical role in the excretion of xenobiotics into bile. Previous studies have demonstrated that prolactin (PRL) regulates biotransformation and bile salt transport. Here we investigate whether the capability of the liver to transport xenobiotics into bile is altered in hyperprolactinemic states studying the modulation of hepatic P-gp by PRL. METHODS: We used lactating post-partum rats (PP), as a model of physiological hyperprolactinemia (15 and 21 days after delivery: PP15 and PP21, respectively), and ovariectomized rats treated with PRL (300 µg/day, 7 days, via osmotic minipumps, OVX + PRL). Hepatic P-gp expression and activity were evaluated by western blotting and using rhodamine 123 as substrate in vivo, respectively. Since P-gp is encoded by Mdr1a and Mdr1b in rodents, we quantified their expression by qPCR in primary hepatocyte cultures exposed to 0.1 µg/ml of PRL after 12 h. To further study the mechanism of hepatic P-gp modulation by PRL, hepatocytes were pretreated with actinomycin D and then exposed to PRL (0.1 µg/ml) for 12 h. KEY FINDINGS: We found increased hepatic P-gp protein expression and activity in PP15 and OVX + PRL. Also, a significant increase in Mdr1a and Mdr1b mRNA levels was observed in primary hepatocyte cultures exposed to PRL, pointing out the hormone direct action. Actinomycin D prevented these increases, confirming a transcriptional up-regulation of P-gp by PRL. SIGNIFICANCE: These findings suggest the possibility of an increased biliary excretion of xenobiotics substrates of P-gp, including therapeutic agents, affecting their pharmaco/toxicokinetics in hyperprolactinemic situations.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Hígado/efectos de los fármacos , Hígado/metabolismo , Prolactina/metabolismo , Prolactina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Lactancia/efectos de los fármacos , Lactancia/metabolismo , Ovariectomía , Ratas , Ratas Wistar , Ovinos
17.
Endocrinology ; 162(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33580265

RESUMEN

CONTEXT: Primary aldosteronism (PA) represents 6% to 10% of all essential hypertension patients and is diagnosed using the aldosterone-to-renin ratio (ARR) and confirmatory studies. The complexity of PA diagnosis encourages the identification of novel PA biomarkers. Urinary extracellular vesicles (uEVs) are a potential source of biomarkers, considering that their cargo reflects the content of the parent cell. OBJECTIVE: We aimed to evaluate the proteome of uEVs from PA patients and identify potential biomarker candidates for PA. METHODS: Second morning spot urine was collected from healthy controls (n = 8) and PA patients (n = 7). The uEVs were isolated by ultracentrifugation and characterized. Proteomic analysis on uEVs was performed using LC-MS Orbitrap. RESULTS: Isolated uEVs carried extracellular vesicle markers, showed a round shape and sizes between 50 and 150 nm. The concentration of uEVs showed a direct correlation with urinary creatinine (r = 0.6357; P = 0.0128). The uEV size mean (167 ±â€…6 vs 183 ±â€…4nm) and mode (137 ±â€…7 vs 171 ±â€…11nm) was significantly smaller in PA patients than in control subjects, but similar in concentration. Proteomic analysis of uEVs from PA patients identified an upregulation of alpha-1-acid glycoprotein 1 (AGP1) in PA uEVs, which was confirmed using immunoblot. A receiver operating characteristic curve analysis showed an area under the curve of 0.92 (0.82 to 1; P = 0.0055). CONCLUSION: Proteomic and further immunoblot analyses of uEVs highlights AGP1 as potential biomarker for PA.


Asunto(s)
Vesículas Extracelulares/química , Hiperaldosteronismo/orina , Orosomucoide/orina , Adulto , Anciano , Biomarcadores/orina , Creatinina/orina , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/genética , Masculino , Persona de Mediana Edad , Orosomucoide/genética , Proteómica , Adulto Joven
18.
Pharmaceutics ; 12(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105857

RESUMEN

Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell types. Recently, an enormous number of studies have been published on the potential of EVs as carriers of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity and higher engineering potential. Here, we review the most relevant publications addressing the potential and use of EVs as a drug delivery system (DDS). The information is divided based on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources and isolation methods of EVs. We address the administration routes that have been tested in vivo and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is performed. Although the application of EVs in the clinical practice is still at an early stage, a high number of studies in animals support their potential as DDS. Thus, better treatment options could be designed to precisely increase target specificity and therapeutic efficacy while reducing off-target effects and toxicity according to the individual requirements of each patient.

19.
Front Cell Dev Biol ; 8: 244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351960

RESUMEN

Extracellular vesicles (EV) are nanosized particles released by a large variety of cells. They carry molecules such as proteins, RNA and lipids. While urinary EVs have been longer studied as a source of biomarkers for renal and non-renal disorders, research on EVs as regulatory players of renal physiological and pathological processes has experienced an outbreak recently in the past decade. In general, the microenvironment and (patho)physiological state of the donor cells affect the cargo of the EVs released, which then determines the effect of these EVs once they reach a target cell. For instance, EVs released by renal epithelial cells modulate the expression and function of water and solute transporting proteins in other cells. Also, EVs have been demonstrated to regulate renal organogenesis and blood flow. Furthermore, a dual role of EVs promoting, but also counteracting, disease has also been reported. EVs released by renal tubular cells can reach fibroblasts, monocytes, macrophages, T cells and natural killer cells, thus influencing the pathogenesis and progression of renal disorders like acute kidney injury and fibrosis, nephrolithiasis, renal transplant rejection and renal cancer, among others. On the contrary, EVs may also exert a cytoprotective role upon renal damage and promote recovery of renal function. In the current review, a systematic summary of the key studies from the past 5 years addressing the role of EVs in the modulation of renal physiological and pathophysiological processes is provided, highlighting open questions and discussing the potential of future research.

20.
Curr Med Chem ; 26(7): 1079-1112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-28933287

RESUMEN

ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA