Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 581(7807): 171-177, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405019

RESUMEN

Two-dimensional (2D) materials1-5 offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants6,7; however, post-growth intercalation has usually been limited to alkali metals8-10. Here we show that the self-intercalation of native atoms11,12 into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites7,13. By performing growth under high metal chemical potential14,15 we can access a range of tantalum-intercalated TaS(Se)y, including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.

2.
NPJ Digit Med ; 7(1): 147, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839920

RESUMEN

Research algorithms are seldom externally validated or integrated into clinical practice, leaving unknown challenges in deployment. In such efforts, one needs to address challenges related to data harmonization, the performance of an algorithm in unforeseen missingness, automation and monitoring of predictions, and legal frameworks. We here describe the deployment of a high-dimensional data-driven decision support model into an EHR and derive practical guidelines informed by this deployment that includes the necessary processes, stakeholders and design requirements for a successful deployment. For this, we describe our deployment of the chronic lymphocytic leukemia (CLL) treatment infection model (CLL-TIM) as a stand-alone platform adjoined to an EPIC-based Danish Electronic Health Record (EHR), with the presentation of personalized predictions in a clinical context. CLL-TIM is an 84-variable data-driven prognostic model utilizing 7-year medical patient records and predicts the 2-year risk composite outcome of infection and/or treatment post-CLL diagnosis. As an independent validation cohort for this deployment, we used a retrospective population-based cohort of patients diagnosed with CLL from 2018 onwards (n = 1480). Unexpectedly high levels of missingness for key CLL-TIM variables were exhibited upon deployment. High dimensionality, with the handling of missingness, and predictive confidence were critical design elements that enabled trustworthy predictions and thus serves as a priority for prognostic models seeking deployment in new EHRs. Our setup for deployment, including automation and monitoring into EHR that meets Medical Device Regulations, may be used as step-by-step guidelines for others aiming at designing and deploying research algorithms into clinical practice.

3.
Nat Nanotechnol ; 15(8): 675-682, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32601449

RESUMEN

The development of infrared photodetectors is mainly limited by the choice of available materials and the intricate crystal growth process. Moreover, thermally activated carriers in traditional III-V and II-VI semiconductors enforce low operating temperatures in the infrared photodetectors. Here we demonstrate infrared photodetection enabled by interlayer excitons (ILEs) generated between tungsten and hafnium disulfide, WS2/HfS2. The photodetector operates at room temperature and shows an even higher performance at higher temperatures owing to the large exciton binding energy and phonon-assisted optical transition. The unique band alignment in the WS2/HfS2 heterostructure allows interlayer bandgap tuning from the mid- to long-wave infrared spectrum. We postulate that the sizeable charge delocalization and ILE accumulation at the interface result in a greatly enhanced oscillator strength of the ILEs and a high responsivity of the photodetector. The sensitivity of ILEs to the thickness of two-dimensional materials and the external field provides an excellent platform to realize robust tunable room temperature infrared photodetectors.

4.
ACS Nano ; 13(11): 13354-13364, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31613091

RESUMEN

Inspired by the recent synthesis of monolayer MoSSe, we conduct a first-principles high-throughput investigation of 216 MXY Janus monolayers consisting of a middle layer of metal atoms (M) sandwiched between different types of chalcogen, halogen, or pnictogen atoms (X,Y). Using density functional theory and many-body perturbation theory, we perform an exhaustive computational characterization of the 70 most stable semiconducting monolayers. These are found to exhibit diverse and fascinating properties including finite out-of-plane dipoles, giant Rashba-splittings, direct and indirect band gaps ranging from 0.7 to 3.0 eV, large exciton binding energies, and very strong light-matter interactions. The data have been generated using the workflow behind the Computational 2D Materials Database and are freely available online. Our work expands the class of known Janus monolayers and points to several potentially synthesizable structures, which could be interesting candidates for valley- or optoelectronic applications or for generating out-of-plane electric fields to control charge transfer, charge separation, or band alignments in van der Waals heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA