Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3559, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729171

RESUMEN

Robotics and autonomous systems are reshaping the world, changing healthcare, food production and biodiversity management. While they will play a fundamental role in delivering the UN Sustainable Development Goals, associated opportunities and threats are yet to be considered systematically. We report on a horizon scan evaluating robotics and autonomous systems impact on all Sustainable Development Goals, involving 102 experts from around the world. Robotics and autonomous systems are likely to transform how the Sustainable Development Goals are achieved, through replacing and supporting human activities, fostering innovation, enhancing remote access and improving monitoring. Emerging threats relate to reinforcing inequalities, exacerbating environmental change, diverting resources from tried-and-tested solutions and reducing freedom and privacy through inadequate governance. Although predicting future impacts of robotics and autonomous systems on the Sustainable Development Goals is difficult, thoroughly examining technological developments early is essential to prevent unintended detrimental consequences. Additionally, robotics and autonomous systems should be considered explicitly when developing future iterations of the Sustainable Development Goals to avoid reversing progress or exacerbating inequalities.


Asunto(s)
Robótica , Desarrollo Sostenible , Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Humanos
2.
Environ Pollut ; 158(5): 1756-62, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19954870

RESUMEN

Sediments affected by fluctuations of hydrocarbon contaminated groundwater were studied at a former military site. Due to remediation, groundwater table fluctuation (GWTF) extends over approximately one meter. Three cores were collected, penetrating through the GWTF zone. Magnetic parameters, sediment properties and hydrocarbon content were measured. We discovered that magnetic concentration parameters increased towards the top of the GWTF zone. Magnetite is responsible for this enhancement; rock magnetic parameters indicate that the newly formed magnetite is in a single domain rather than a superparamagnetic state. The presence of hydrocarbons is apparently essential for magnetite to form, as there is clearly less magnetic enhancement in the core, which is outside of the strongly contaminated area. From our results we conclude that the top of the fluctuation zone has the most intensive geomicrobiological activity probably responsible for magnetite formation. This finding could be relevant for developing methods for simply and quickly detecting oil spills.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Hidrocarburos/química , Contaminantes Químicos del Agua/química , Magnetismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA