RESUMEN
Electrodeposition of Sn from supercritical difluoromethane has been performed into anodic alumina templates with pores down to 3 nm in diameter and into mesoporous silica templates with pores of diameter 1.5 nm. Optimized deposits have been characterized using X-ray diffraction, scanning electron microscopy, and scanning transmission electron microscopy (bright field, high-angle annular dark field, and energy-dispersive X-ray elemental mapping). Crystalline 13 nm diameter Sn nanowires have been electrodeposited in symmetric pore anodic alumina. Direct transmission electron microscopy evidence of sub 7 nm Sn nanowires in asymmetric anodic alumina has been obtained. These same measurements present indirect evidence for electrodeposition through 3 nm constrictions in the same templates. A detailed transmission electron microscopy study of mesoporous silica films after Sn deposition is presented. These indicate that it is possible to deposit Sn through the 1.5 nm pores in the mesoporous films, but that the nanowires formed are not stable. Suggestions of why this is the case and how such extreme nanowires could be stabilized are presented.