Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38289969

RESUMEN

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Cisteína/genética , Mutación , Superóxido Dismutasa/genética , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética
2.
Cell ; 150(6): 1093-5, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980970

RESUMEN

This year, the Albert Lasker Basic Medical Research Award will be shared by Michael Sheetz, James Spudich, and Ronald Vale for discoveries concerning the biophysical actions of cytoskeletal motor-protein machines that move cargo within cells, contract muscles, and enable cell motility.


Asunto(s)
Movimiento Celular , Proteínas Motoras Moleculares/metabolismo , Movimiento , Citoesqueleto/metabolismo , Enfermedad/genética , Cinesinas/genética , Cinesinas/metabolismo , Vida , Marte , Proteínas Motoras Moleculares/genética , Contracción Muscular
3.
Biochemistry ; 59(44): 4238-4249, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33135413

RESUMEN

The metalloenzyme acireductone dioxygenase (ARD) shows metal-dependent physical and enzymatic activities depending upon the metal bound in the active site. The Fe(II)-bound enzyme catalyzes the penultimate step of the methionine salvage pathway, converting 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one (acireductone) into formate and the ketoacid precursor of methionine, 2-keto-4-thiomethyl-2-oxobutanoate, using O2 as the oxidant. If Ni(II) is bound, an off-pathway shunt occurs, producing 3-methylthiopropionate, formate, and carbon monoxide from the same acireductone substrate. The solution structure of the Fe(II)-bound human enzyme, HsARD, is described and compared with the structures of Ni-bound forms of the closely related mouse enzyme, MmARD. Potential rationales for the different reactivities of the two isoforms are discussed. The human enzyme has been found to regulate the activity of matrix metalloproteinase I (MMP-I), which is involved in tumor metastasis, by binding the cytoplasmic transmembrane tail peptide of MMP-I. Nuclear magnetic resonance titration of HsARD with the MMP-I tail peptide permits identification of the peptide binding site on HsARD, a cleft anterior to the metal binding site adjacent to a dynamic proline-rich loop.


Asunto(s)
Dioxigenasas/química , Dioxigenasas/metabolismo , Hierro/metabolismo , Metaloproteinasa 1 de la Matriz/química , Metaloproteinasa 1 de la Matriz/metabolismo , Dominio Catalítico , Humanos , Modelos Moleculares , Soluciones
4.
Proc Natl Acad Sci U S A ; 114(15): 3891-3896, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28348215

RESUMEN

The Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of γ-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic γ-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoic acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Fosfato de Piridoxal/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Operón , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/farmacología , Regiones Promotoras Genéticas , Dominios Proteicos , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética , Bases de Schiff , Transcripción Genética , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/genética
5.
Chem Rev ; 117(15): 10474-10501, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28731690

RESUMEN

Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.


Asunto(s)
Dioxigenasas/química , Dioxigenasas/metabolismo , Hierro/metabolismo , Enzimas Multifuncionales/química , Enzimas Multifuncionales/metabolismo , Níquel/metabolismo , Animales , Humanos , Klebsiella oxytoca/enzimología , Modelos Moleculares , Estructura Molecular
6.
Proc Natl Acad Sci U S A ; 113(34): 9593-8, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27482103

RESUMEN

Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation.


Asunto(s)
Caspasa 1/genética , Cuerpo Estriado/efectos de los fármacos , Dipéptidos/farmacología , Atrofia de Múltiples Sistemas/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Sustancia Negra/efectos de los fármacos , alfa-Sinucleína/genética , para-Aminobenzoatos/farmacología , Animales , Caspasa 1/metabolismo , Ensayos Clínicos como Asunto , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Agregado de Proteínas/efectos de los fármacos , Agregado de Proteínas/genética , Proteolisis , Transducción de Señal , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(43): E6572-E6581, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791029

RESUMEN

The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes.


Asunto(s)
Cromatina/química , ADN/química , Genoma , Proteínas de Dominio T Box/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cromatina/metabolismo , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Elementos de Facilitación Genéticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Secuencias Invertidas Repetidas , Ratones , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Xenopus laevis
8.
Proc Natl Acad Sci U S A ; 113(34): 9587-92, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27482083

RESUMEN

The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.


Asunto(s)
Caspasa 1/genética , Inflamasomas/metabolismo , Cuerpos de Lewy/metabolismo , Neuronas/metabolismo , Agregado de Proteínas/genética , alfa-Sinucleína/genética , Compuestos de Alumbre/farmacología , Caspasa 1/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dipéptidos/farmacología , Regulación de la Expresión Génica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/patología , Lipopolisacáridos/farmacología , Neuronas/efectos de los fármacos , Neuronas/patología , Nigericina/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Vitamina K 3/farmacología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , para-Aminobenzoatos/farmacología
9.
Biochemistry ; 57(22): 3134-3145, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29630349

RESUMEN

Cystathionine ß-synthase (CBS) is a key regulator of sulfur amino acid metabolism, taking homocysteine from the methionine cycle to the biosynthesis of cysteine via the trans-sulfuration pathway. CBS is also a predominant source of H2S biogenesis. Roles for CBS have been reported for neuronal death pursuant to cerebral ischemia, promoting ovarian tumor growth, and maintaining drug-resistant phenotype by controlling redox behavior and regulating mitochondrial bioenergetics. The trans-sulfuration pathway is well-conserved in eukaryotes, but the analogous enzymes have different enzymatic behavior in different organisms. CBSs from the higher organisms contain a heme in an N-terminal domain. Though the presence of the heme, whose functions in CBSs have yet to be elucidated, is biochemically interesting, it hampers UV-vis absorption spectroscopy investigations of pyridoxal 5'-phosphate (PLP) species. CBS from Saccharomyces cerevisiae (yCBS) naturally lacks the heme-containing N-terminal domain, which makes it an ideal model for spectroscopic studies of the enzymological reaction catalyzed and allows structural studies of the basic yCBS catalytic core (yCBS-cc). Here we present the crystal structure of yCBS-cc, solved to 1.5 Å. Crystal structures of yCBS-cc in complex with enzymatic reaction intermediates have been captured, providing a structural basis for residues involved in catalysis. Finally, the structure of the yCBS-cc cofactor complex generated by incubation with an inhibitor shows apparent off-pathway chemistry not normally seen with CBS.


Asunto(s)
Cistationina betasintasa/química , Cistationina betasintasa/fisiología , Catálisis , Cistationina betasintasa/metabolismo , Cisteína/biosíntesis , Cisteína/química , Hemo/metabolismo , Humanos , Cinética , Modelos Moleculares , Oxidación-Reducción , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
10.
Proc Natl Acad Sci U S A ; 112(25): 7821-6, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056265

RESUMEN

Over 30% of patients with amyotrophic lateral sclerosis (ALS) exhibit cognitive deficits indicative of frontotemporal dementia (FTD), suggesting a common pathogenesis for both diseases. Consistent with this hypothesis, neuronal and glial inclusions rich in TDP43, an essential RNA-binding protein, are found in the majority of those with ALS and FTD, and mutations in TDP43 and a related RNA-binding protein, FUS, cause familial ALS and FTD. TDP43 and FUS affect the splicing of thousands of transcripts, in some cases triggering nonsense-mediated mRNA decay (NMD), a highly conserved RNA degradation pathway. Here, we take advantage of a faithful primary neuronal model of ALS and FTD to investigate and characterize the role of human up-frameshift protein 1 (hUPF1), an RNA helicase and master regulator of NMD, in these disorders. We show that hUPF1 significantly protects mammalian neurons from both TDP43- and FUS-related toxicity. Expression of hUPF2, another essential component of NMD, also improves survival, whereas inhibiting NMD prevents rescue by hUPF1, suggesting that hUPF1 acts through NMD to enhance survival. These studies emphasize the importance of RNA metabolism in ALS and FTD, and identify a uniquely effective therapeutic strategy for these disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Modelos Biológicos , Neuronas/efectos de los fármacos , Transactivadores/fisiología , Supervivencia Celular , Humanos , Fármacos Neuroprotectores/farmacología , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas
11.
Proc Natl Acad Sci U S A ; 112(28): 8756-61, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124091

RESUMEN

Parkinson's disease (PD), primarily caused by selective degeneration of midbrain dopamine (mDA) neurons, is the most prevalent movement disorder, affecting 1-2% of the global population over the age of 65. Currently available pharmacological treatments are largely symptomatic and lose their efficacy over time with accompanying severe side effects such as dyskinesia. Thus, there is an unmet clinical need to develop mechanism-based and/or disease-modifying treatments. Based on the unique dual role of the nuclear orphan receptor Nurr1 for development and maintenance of mDA neurons and their protection from inflammation-induced death, we hypothesize that Nurr1 can be a molecular target for neuroprotective therapeutic development for PD. Here we show successful identification of Nurr1 agonists sharing an identical chemical scaffold, 4-amino-7-chloroquinoline, suggesting a critical structure-activity relationship. In particular, we found that two antimalarial drugs, amodiaquine and chloroquine stimulate the transcriptional function of Nurr1 through physical interaction with its ligand binding domain (LBD). Remarkably, these compounds were able to enhance the contrasting dual functions of Nurr1 by further increasing transcriptional activation of mDA-specific genes and further enhancing transrepression of neurotoxic proinflammatory gene expression in microglia. Importantly, these compounds significantly improved behavioral deficits in 6-hydroxydopamine lesioned rat model of PD without any detectable signs of dyskinesia-like behavior. These findings offer proof of principle that small molecules targeting the Nurr1 LBD can be used as a mechanism-based and neuroprotective strategy for PD.


Asunto(s)
Conducta Animal/efectos de los fármacos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/agonistas , Enfermedad de Parkinson/psicología , Amodiaquina/metabolismo , Amodiaquina/farmacología , Animales , Cloroquina/metabolismo , Cloroquina/farmacología , Modelos Animales de Enfermedad , Ligandos , Neurogénesis , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Ratas
12.
Biochemistry ; 56(37): 4951-4961, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28816437

RESUMEN

Potent mechanism-based inactivators can be rationally designed against pyridoxal 5'-phosphate (PLP)-dependent drug targets, such as ornithine aminotransferase (OAT) or γ-aminobutyric acid aminotransferase (GABA-AT). An important challenge, however, is the lack of selectivity toward other PLP-dependent, off-target enzymes, because of similarities in mechanisms of all PLP-dependent aminotransferase reactions. On the basis of complex crystal structures, we investigate the inactivation mechanism of OAT, a hepatocellular carcinoma target, by (1R,3S,4S)-3-amino-4-fluorocyclopentane-1-carboxylic acid (FCP), a known inactivator of GABA-AT. A crystal structure of OAT and FCP showed the formation of a ternary adduct. This adduct can be rationalized as occurring via an enamine mechanism of inactivation, similar to that reported for GABA-AT. However, the crystal structure of an off-target, PLP-dependent enzyme, aspartate aminotransferase (Asp-AT), in complex with FCP, along with the results of attempted inhibition assays, suggests that FCP is not an inactivator of Asp-AT, but rather an alternate substrate. Turnover of FCP by Asp-AT is also supported by high-resolution mass spectrometry. Amid existing difficulties in achieving selectivity of inactivation among a large number of PLP-dependent enzymes, the obtained results provide evidence that a desirable selectivity could be achieved, taking advantage of subtle structural and mechanistic differences between a drug-target enzyme and an off-target enzyme, despite their largely similar substrate binding sites and catalytic mechanisms.


Asunto(s)
4-Aminobutirato Transaminasa/antagonistas & inhibidores , Aspartato Aminotransferasas/antagonistas & inhibidores , Cicloleucina/análogos & derivados , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Ornitina-Oxo-Ácido Transaminasa/antagonistas & inhibidores , Fosfato de Piridoxal/metabolismo , 4-Aminobutirato Transaminasa/química , 4-Aminobutirato Transaminasa/metabolismo , Aspartato Aminotransferasas/química , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Cicloleucina/química , Cicloleucina/metabolismo , Cicloleucina/farmacología , Bases de Datos de Compuestos Químicos , Bases de Datos de Proteínas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Ligandos , Conformación Molecular , Ornitina-Oxo-Ácido Transaminasa/química , Ornitina-Oxo-Ácido Transaminasa/genética , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Conformación Proteica , Fosfato de Piridoxal/química , Piridoxamina/química , Piridoxamina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
13.
Biochemistry ; 56(17): 2304-2314, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28346784

RESUMEN

The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Serina Proteasas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Dicroismo Circular , Cristalografía por Rayos X , Estabilidad de Enzimas , Metionina/química , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Selenometionina/química , Serina Proteasas/química , Serina Proteasas/genética , Homología Estructural de Proteína , Especificidad por Sustrato
14.
Proc Natl Acad Sci U S A ; 111(1): 137-42, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24351929

RESUMEN

Thiaminases, enzymes that cleave vitamin B1, are sporadically distributed among prokaryotes and eukaryotes. Thiaminase I enzymes catalyze the elimination of the thiazole ring moiety from thiamin through substitution of the methylene group with a nitrogenous base or sulfhydryl compound. In eukaryotic organisms, these enzymes are reported to have much higher molecular weights than their bacterial counterparts. A thiaminase I of the single-celled amoeboflagellate Naegleria gruberi is the only eukaryotic thiaminase I to have been cloned, sequenced, and expressed. Here, we present the crystal structure of N. gruberi thiaminase I to a resolution of 2.8 Å, solved by isomorphous replacement and pseudo-two-wavelength multiwavelength anomalous diffraction and refined to an R factor of 0.231 (Rfree, 0.265). This structure was used to solve the structure of the enzyme in complex with 3-deazathiamin, a noncleavable thiamin analog and enzyme inhibitor (2.7 Å; R, 0.233; Rfree, 0.267). These structures define the mode of thiamin binding to this class of thiaminases and indicate the involvement of Asp272 as the catalytic base. This enzyme is able to use thiamin as a substrate and is active with amines such as aniline and veratrylamine as well as sulfhydryl compounds such as l-cysteine and ß-mercaptoethanol as cosubstrates. Despite significant differences in polypeptide sequence and length, we have shown that the N. gruberi thiaminase I is homologous in structure and activity to a previously characterized bacterial thiaminase I.


Asunto(s)
Hidrolasas/química , Naegleria/enzimología , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/metabolismo , Mercaptoetanol/química , Péptidos/química , Unión Proteica , Tiamina/química
15.
Biochemistry ; 55(9): 1398-407, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26858196

RESUMEN

The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella oxytoca are the only known pair of naturally occurring metalloenzymes with distinct chemical and physical properties determined solely by the identity of the divalent transition metal ion (Fe(2+) or Ni(2+)) in the active site. We now show that this dual chemistry can also occur in mammals. ARD from Mus musculus (MmARD) was studied to relate the metal ion identity and three-dimensional structure to enzyme function. The iron-containing isozyme catalyzes the cleavage of 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, which is the penultimate step in methionine salvage. The nickel-bound form of ARD catalyzes an off-pathway reaction resulting in formate, carbon monoxide (CO), and 3-(thiomethyl) propionate. Recombinant MmARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. The Fe(2+)-bound protein, which shows about 10-fold higher activity than that of others, catalyzes on-pathway chemistry, whereas the Ni(2+), Co(2+), or Mn(2+) forms exhibit off-pathway chemistry, as has been seen with ARD from Klebsiella. Thermal stability of the isozymes is strongly affected by the metal ion identity, with Ni(2+)-bound MmARD being the most stable, followed by Co(2+) and Fe(2+), and Mn(2+)-bound ARD being the least stable. Ni(2+)- and Co(2+)-bound MmARD were crystallized, and the structures of the two proteins found to be similar. Enzyme-ligand complexes provide insight into substrate binding, metal coordination, and the catalytic mechanism.


Asunto(s)
Dioxigenasas/química , Dioxigenasas/fisiología , Metales/química , Metales/metabolismo , Animales , Ratones , Estructura Secundaria de Proteína , Difracción de Rayos X
16.
PLoS Pathog ; 10(5): e1004132, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24830429

RESUMEN

Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb.


Asunto(s)
Proteínas Bacterianas/fisiología , Chaperonina 60/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Mycobacterium tuberculosis/enzimología , Serina Endopeptidasas/fisiología , Serina Proteasas/fisiología , Animales , Proteínas Bacterianas/metabolismo , Células Cultivadas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Unión Proteica , Multimerización de Proteína , Proteolisis , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo
17.
Nat Chem Biol ; 10(6): 443-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24747528

RESUMEN

Retromer is a multiprotein complex that trafficks cargo out of endosomes. The neuronal retromer traffics the amyloid-precursor protein (APP) away from endosomes, a site where APP is cleaved into pathogenic fragments in Alzheimer's disease. Here we determined whether pharmacological chaperones can enhance retromer stability and function. First, we relied on the crystal structures of retromer proteins to help identify the 'weak link' of the complex and to complete an in silico screen of small molecules predicted to enhance retromer stability. Among the hits, an in vitro assay identified one molecule that stabilized retromer against thermal denaturation. Second, we turned to cultured hippocampal neurons, showing that this small molecule increases the levels of retromer proteins, shifts APP away from the endosome, and decreases the pathogenic processing of APP. These findings show that pharmacological chaperones can enhance the function of a multiprotein complex and may have potential therapeutic implications for neurodegenerative diseases.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Portadoras/metabolismo , Neuronas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas de Transporte Vesicular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Proteínas Portadoras/genética , Células Cultivadas , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Neuronas/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Bibliotecas de Moléculas Pequeñas/química , Proteínas de Transporte Vesicular/genética
18.
Proc Natl Acad Sci U S A ; 110(44): 17820-5, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24127574

RESUMEN

Bacillus subtilis GabR is a transcription factor that regulates gamma-aminobutyric acid (GABA) metabolism. GabR is a member of the understudied MocR/GabR subfamily of the GntR family of transcription regulators. A typical MocR/GabR-type regulator is a chimeric protein containing a short N-terminal helix-turn-helix DNA-binding domain and a long C-terminal pyridoxal 5'-phosphate (PLP)-binding putative aminotransferase domain. In the presence of PLP and GABA, GabR activates the gabTD operon, which allows the bacterium to use GABA as nitrogen and carbon sources. GabR binds to its own promoter and represses gabR transcription in the absence of GABA. Here, we report two crystal structures of full-length GabR from B. subtilis: a 2.7-Å structure of GabR with PLP bound and the 2.55-Å apo structure of GabR without PLP. The quaternary structure of GabR is a head-to-tail domain-swap homodimer. Each monomer comprises two domains: an N-terminal winged-helix DNA-binding domain and a C-terminal PLP-binding type I aminotransferase-like domain. The winged-helix domain contains putative DNA-binding residues conserved in other GntR-type regulators. Together with sedimentation velocity and fluorescence polarization assays, the crystal structure of GabR provides insights into DNA binding by GabR at the gabR and gabT promoters. The absence of GabR-mediated aminotransferase activity in the presence of GABA and PLP, and the presence of an active site configuration that is incompatible with stabilization of the GABA external aldimine suggest that a GabR aminotransferase-like activity involving GABA and PLP is not essential to its primary function as a transcription regulator.


Asunto(s)
Bacillus subtilis/química , Evolución Molecular , Regulación Bacteriana de la Expresión Génica/genética , Modelos Moleculares , Conformación Proteica , Factores de Transcripción/química , Dimerización , Fosfato de Piridoxal/metabolismo , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(28): E2552-61, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798390

RESUMEN

Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol-Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations.


Asunto(s)
Cetosteroides/metabolismo , Protones , Esteroide Isomerasas/metabolismo , Dominio Catalítico , Enlace de Hidrógeno , Transporte Iónico , Modelos Moleculares , Pseudomonas putida/enzimología , Espectrofotometría Infrarroja
20.
Proteomics ; 14(10): 1152-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24634066

RESUMEN

Bottom-up MS studies typically employ a reduction and alkylation step that eliminates a class of PTM, S-thiolation. Given that molecular oxygen can mediate S-thiolation from reduced thiols, which are abundant in the reducing intracellular milieu, we investigated the possibility that some S-thiolation modifications are artifacts of protein preparation. Cu/Zn-superoxide dismutase (SOD1) was chosen for this case study as it has a reactive surface cysteine residue, which is readily cysteinylated in vitro. The ability of oxygen to generate S-thiolation artifacts was tested by comparing purification of SOD1 from postmortem human cerebral cortex under aerobic and anaerobic conditions. S-thiolation was ∼50% higher in aerobically processed preparations, consistent with oxygen-dependent artifactual S-thiolation. The ability of endogenous small molecule disulfides (e.g. cystine) to participate in artifactual S-thiolation was tested by blocking reactive protein cysteine residues during anaerobic homogenization. A 50-fold reduction in S-thiolation occurred indicating that the majority of S-thiolation observed aerobically was artifact. Tissue-specific artifacts were explored by comparing brain- and blood-derived protein, with remarkably more artifacts observed in brain-derived SOD1. Given the potential for such artifacts, rules of thumb for sample preparation are provided. This study demonstrates that without taking extraordinary precaution, artifactual S-thiolation of highly reactive, surface-exposed, cysteine residues can result.


Asunto(s)
Cisteína/metabolismo , Espectrometría de Masas/métodos , Proteínas/análisis , Proteínas/metabolismo , Proteómica/métodos , Animales , Artefactos , Corteza Cerebral/química , Cisteína/química , Disulfuros/química , Disulfuros/metabolismo , Humanos , Ratones , Procesamiento Proteico-Postraduccional , Proteínas/química , Superóxido Dismutasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA