Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Rev Mol Cell Biol ; 15(5): 340-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24755934

RESUMEN

In any biological system with memory, the state of the system depends on its history. Epigenetic memory maintains gene expression states through cell generations without a change in DNA sequence and in the absence of initiating signals. It is immensely powerful in biological systems - it adds long-term stability to gene expression states and increases the robustness of gene regulatory networks. The Polycomb group (PcG) and Trithorax group (TrxG) proteins can confer long-term, mitotically heritable memory by sustaining silent and active gene expression states, respectively. Several recent studies have advanced our understanding of the molecular mechanisms of this epigenetic memory during DNA replication and mitosis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigénesis Genética , Larva/genética , Proteínas del Grupo Polycomb/genética , Animales , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Expresión Génica , Genes Homeobox , Larva/crecimiento & desarrollo , Larva/metabolismo , Mitosis/genética , Proteínas del Grupo Polycomb/metabolismo
2.
Annu Rev Genet ; 51: 385-411, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28934594

RESUMEN

The question of how noncoding RNAs are involved in Polycomb group (PcG) and Trithorax group (TrxG) regulation has been on an extraordinary journey over the last three decades. Favored models have risen and fallen, and healthy debates have swept back and forth. The field has recently reached a critical mass of compelling data that throws light on several previously unresolved issues. The time is ripe for a fruitful combination of these findings with two other long-running avenues of research, namely the biochemical properties of the PcG/TrxG system and the application of theoretical mathematical models toward an understanding of the system's regulatory properties. I propose that integrating our current knowledge of noncoding RNA into a quantitative biochemical and theoretical framework for PcG and TrxG regulation has the potential to reconcile several apparently conflicting models and identifies fascinating questions for future research.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigénesis Genética , Histonas/genética , Proteínas del Grupo Polycomb/genética , ARN no Traducido/genética , Animales , Proteínas Cromosómicas no Histona/metabolismo , Simulación por Computador , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genes Homeobox , Histonas/metabolismo , Humanos , Ratones , Modelos Genéticos , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica , ARN no Traducido/metabolismo
4.
Chromosoma ; 130(2-3): 215-234, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34331109

RESUMEN

The Drosophila Trithorax group (TrxG) protein ASH1 remains associated with mitotic chromatin through mechanisms that are poorly understood. ASH1 dimethylates histone H3 at lysine 36 via its SET domain. Here, we identify domains of the TrxG protein ASH1 that are required for mitotic chromatin attachment in living Drosophila. Quantitative live imaging demonstrates that ASH1 requires AT hooks and the BAH domain but not the SET domain for full chromatin binding in metaphase, and that none of these domains are essential for interphase binding. Genetic experiments show that disruptions of the AT hooks and the BAH domain together, but not deletion of the SET domain alone, are lethal. Transcriptional profiling demonstrates that intact ASH1 AT hooks and the BAH domain are required to maintain expression levels of a specific set of genes, including several involved in cell identity and survival. This study identifies in vivo roles for specific ASH1 domains in mitotic binding, gene regulation, and survival that are distinct from its functions as a histone methyltransferase.


Asunto(s)
Cromatina , Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila/citología , Factores de Transcripción , Secuencias AT-Hook , Animales , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dominios PR-SET , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nat Rev Mol Cell Biol ; 16(11): 642, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26490398
6.
Genes Dev ; 26(8): 857-71, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22508729

RESUMEN

Epigenetic memory mediated by Polycomb group (PcG) proteins must be maintained during cell division, but must also be flexible to allow cell fate transitions. Here we quantify dynamic chromatin-binding properties of PH::GFP and PC::GFP in living Drosophila in two cell types that undergo defined differentiation and mitosis events. Quantitative fluorescence recovery after photobleaching (FRAP) analysis demonstrates that PcG binding has a higher plasticity in stem cells than in more determined cells and identifies a fraction of PcG proteins that binds mitotic chromatin with up to 300-fold longer residence times than in interphase. Mathematical modeling examines which parameters best distinguish stem cells from differentiated cells. We identify phosphorylation of histone H3 at Ser 28 as a potential mechanism governing the extent and rate of mitotic PC dissociation in different lineages. We propose that regulation of the kinetic properties of PcG-chromatin binding is an essential factor in the choice between stability and flexibility in the establishment of cell identities.


Asunto(s)
Diferenciación Celular , Cromatina/metabolismo , Mitosis , Proteínas Represoras/metabolismo , Células Madre/citología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Modelos Biológicos , Fosforilación , Proteínas del Grupo Polycomb , Serina/metabolismo , Células Madre/metabolismo
7.
EMBO Rep ; 17(11): 1624-1640, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702987

RESUMEN

The HOIP ubiquitin E3 ligase generates linear ubiquitin chains by forming a complex with HOIL-1L and SHARPIN in mammals. Here, we provide the first evidence of linear ubiquitination induced by a HOIP orthologue in Drosophila We identify Drosophila CG11321, which we named Linear Ubiquitin E3 ligase (LUBEL), and find that it catalyzes linear ubiquitination in vitro We detect endogenous linear ubiquitin chain-derived peptides by mass spectrometry in Drosophila Schneider 2 cells and adult flies. Furthermore, using CRISPR/Cas9 technology, we establish linear ubiquitination-defective flies by mutating residues essential for the catalytic activity of LUBEL Linear ubiquitination signals accumulate upon heat shock in flies. Interestingly, flies with LUBEL mutations display reduced survival and climbing defects upon heat shock, which is also observed upon specific LUBEL depletion in muscle. Thus, LUBEL is involved in the heat response by controlling linear ubiquitination in flies.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/fisiología , Respuesta al Choque Térmico/fisiología , Proteínas de Unión al ARN/genética , Animales , Catálisis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Proteínas de Drosophila/metabolismo , Mutación , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
Chromosoma ; 125(3): 471-96, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26453572

RESUMEN

A long-standing mystery in the field of Polycomb and Trithorax regulation is how these proteins, which are highly conserved between flies and mammals, can regulate several hundred equally highly conserved target genes, but recognise these targets via cis-regulatory elements that appear to show no conservation in their DNA sequence. These elements, termed Polycomb/Trithorax response elements (PRE/TREs or PREs), are relatively well characterised in flies, but their mammalian counterparts have proved to be extremely difficult to identify. Recent progress in this endeavour has generated a wealth of data and raised several intriguing questions. Here, we ask why and to what extent mammalian PREs are so different to those of the fly. We review recent advances, evaluate current models and identify open questions in the quest for mammalian PREs.


Asunto(s)
Drosophila melanogaster/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Elementos de Respuesta/genética , Animales , Proteínas Cromosómicas no Histona/genética , Islas de CpG/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Genes Homeobox/genética , Histonas/metabolismo , Humanos , Ratones , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo
9.
Nucleic Acids Res ; 41(10): 5235-50, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23580551

RESUMEN

The Polycomb (PcG) and Trithorax (TrxG) group proteins work antagonistically on several hundred developmentally important target genes, giving stable mitotic memory, but also allowing flexibility of gene expression states. How this is achieved in quantitative terms is poorly understood. Here, we present a quantitative kinetic analysis in living Drosophila of the PcG proteins Enhancer of Zeste, (E(Z)), Pleiohomeotic (PHO) and Polycomb (PC) and the TrxG protein absent, small or homeotic discs 1 (ASH1). Fluorescence recovery after photobleaching and fluorescence correlation spectroscopy reveal highly dynamic chromatin binding behaviour for all proteins, with exchange occurring within seconds. We show that although the PcG proteins substantially dissociate from mitotic chromatin, ASH1 remains robustly associated with chromatin throughout mitosis. Finally, we show that chromatin binding by ASH1 and PC switches from an antagonistic relationship in interphase, to a cooperative one during mitosis. These results provide quantitative insights into PcG and TrxG chromatin-binding dynamics and have implications for our understanding of the molecular nature of epigenetic memory.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Mitosis/genética , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/genética , Células-Madre Neurales/metabolismo , Proteínas Nucleares/genética , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Proteínas Recombinantes de Fusión/análisis , Factores de Transcripción/genética
10.
Curr Opin Cell Biol ; 19(3): 290-7, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17481880

RESUMEN

The Polycomb group proteins are best known for their role as epigenetic regulators of the fly homeotic (Hox) gene clusters, but it has long been clear that these well conserved proteins have many other targets. For example, they are vital for maintaining both the pluripotency of stem cells and the identity of differentiated cells. However, a comprehensive list of experimentally defined targets has been lacking. Six new studies use genome wide profiling techniques to map Polycomb targets in stem cells and differentiated cells in vertebrates and flies. The findings of these studies demand that we rethink some of our current assumptions about Polycomb function.


Asunto(s)
Perfilación de la Expresión Génica , Genoma , Proteínas Represoras , Células Madre/citología , Células Madre/metabolismo , Animales , Mapeo Cromosómico , Marcación de Gen , Genes Reguladores , Humanos , Modelos Biológicos , Proteínas del Grupo Polycomb
11.
Bioessays ; 34(7): 620-5, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22581641

RESUMEN

This meeting united participants from the fields of experimental epigenetics, mathematics and computational biology, to discuss results and challenges in the endeavour to explore points of synergy between these fields. The design shown here expresses the idea of moving complex biological phenomena (left nucleosome) towards precise mathematical descriptions (right nucleosome).


Asunto(s)
Epigénesis Genética , Biología de Sistemas , Austria , Secuencia de Bases , Cromatina/genética , Cromatina/metabolismo , Biología Computacional/métodos , Congresos como Asunto , Epigenómica/métodos , Evolución Molecular , Genoma Humano , Humanos , Patrón de Herencia , Proteómica/métodos , ARN no Traducido/genética , ARN no Traducido/metabolismo
12.
Bioessays ; 34(10): 901-13, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22911103

RESUMEN

How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins.


Asunto(s)
Algoritmos , Cromatina/genética , Simulación por Computador , Epigénesis Genética , Modelos Genéticos , Animales , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Cinética , Unión Proteica , Procesos Estocásticos
13.
Proc Natl Acad Sci U S A ; 108(14): 5572-7, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21415365

RESUMEN

The maintenance of specific gene expression patterns during cellular proliferation is crucial for the identity of every cell type and the development of tissues in multicellular organisms. Such a cellular memory function is conveyed by the complex interplay of the Polycomb and Trithorax groups of proteins (PcG/TrxG). These proteins exert their function at the level of chromatin by establishing and maintaining repressed (PcG) and active (TrxG) chromatin domains. Past studies indicated that a core PcG protein complex is potentially associated with cell type or even cell stage-specific sets of accessory proteins. In order to better understand the dynamic aspects underlying PcG composition and function we have established an inducible version of the biotinylation tagging approach to purify Polycomb and associated factors from Drosophila embryos. This system enabled fast and efficient isolation of Polycomb containing complexes under near physiological conditions, thereby preserving substoichiometric interactions. Novel interacting proteins were identified by highly sensitive mass spectrometric analysis. We found many TrxG related proteins, suggesting a previously unrecognized extent of molecular interaction of the two counteracting chromatin regulatory protein groups. Furthermore, our analysis revealed an association of PcG protein complexes with the cohesin complex and showed that Polycomb-dependent silencing of a transgenic reporter depends on cohesin function.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Animales , Biotinilación , Cromatina/metabolismo , Cromatografía en Gel , Drosophila/genética , Drosophila/fisiología , Ligandos , Espectrometría de Masas , Oligonucleótidos/genética , Complejo Represivo Polycomb 1 , Espectrofotometría , Cohesinas
14.
RNA Biol ; 9(3): 314-25, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22336714

RESUMEN

Non-coding (nc) RNAs are involved both in recruitment of vertebrate Polycomb (PcG) proteins to chromatin, and in activation of PcG target genes. Here we investigate dynamic changes in the relationship between ncRNA transcription and recruitment of PcG proteins to chromatin during differentiation. Profiling of purified cell populations from different stages of a defined murine in vitro neural differentiation system shows that over 50% of regulated intergenic non-coding transcripts precisely correspond to PcG target sites. We designate these PcG recruiting elements as Transcribed Intergenic Polycomb (TIP) sites. The relationship between TIP transcription and PcG recruitment switches dynamically during differentiation between different states, in which transcription and PcG recruitment exclude each other, or in which both are present. Reporter assays show that transcribed TIP sites can repress a flanking gene. Knockdown experiments demonstrate that TIP ncRNAs are themselves required for repression of target genes both in cis and in trans. We propose that TIP transcription may ensure coordinated regulation of gene networks via dynamic switching and recruitment of PcG proteins both in cis and in trans during lineage commitment.


Asunto(s)
Proteínas del Grupo Polycomb/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Genes Reporteros , Histonas/metabolismo , Ratones , Modelos Biológicos , Neuronas/citología , Neuronas/metabolismo
15.
PLoS Biol ; 6(10): e261, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18959483

RESUMEN

cis-Regulatory DNA elements contain multiple binding sites for activators and repressors of transcription. Among these elements are enhancers, which establish gene expression states, and Polycomb/Trithorax response elements (PREs), which take over from enhancers and maintain transcription states of several hundred developmentally important genes. PREs are essential to the correct identities of both stem cells and differentiated cells. Evolutionary differences in cis-regulatory elements are a rich source of phenotypic diversity, and functional binding sites within regulatory elements turn over rapidly in evolution. However, more radical evolutionary changes that go beyond motif turnover have been difficult to assess. We used a combination of genome-wide bioinformatic prediction and experimental validation at specific loci, to evaluate PRE evolution across four Drosophila species. Our results show that PRE evolution is extraordinarily dynamic. First, we show that the numbers of PREs differ dramatically between species. Second, we demonstrate that functional binding sites within PREs at conserved positions turn over rapidly in evolution, as has been observed for enhancer elements. Finally, although it is theoretically possible that new elements can arise out of nonfunctional sequence, evidence that they do so is lacking. We show here that functional PREs are found at nonorthologous sites in conserved gene loci. By demonstrating that PRE evolution is not limited to the adaptation of preexisting elements, these findings document a novel dimension of cis-regulatory evolution.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila/genética , Evolución Molecular , Elementos de Respuesta/genética , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Biología Computacional/métodos , Drosophila/clasificación , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma/genética , Filogenia , Complejo Represivo Polycomb 1 , Especificidad de la Especie
16.
Nature ; 438(7065): 234-7, 2005 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-16281037

RESUMEN

During the regeneration of Drosophila imaginal discs, cellular identities can switch fate in a process known as transdetermination. For leg-to-wing transdetermination, the underlying mechanism involves morphogens such as Wingless that, when activated outside their normal context, induce ectopic expression of the wing-specific selector gene vestigial. Polycomb group (PcG) proteins maintain cellular fates by controlling the expression patterns of homeotic genes and other developmental regulators. Here we report that transdetermination events are coupled to PcG regulation. We show that the frequency of transdetermination is enhanced in PcG mutant flies. Downregulation of PcG function, as monitored by the reactivation of a silent PcG-regulated reporter gene, is observed in transdetermined cells. This downregulation is directly controlled by the Jun amino-terminal kinase (JNK) signalling pathway, which is activated in cells undergoing regeneration. Accordingly, transdetermination frequency is reduced in a JNK mutant background. This regulatory interaction also occurs in mammalian cells, indicating that the role of this signalling cascade in remodelling cellular fates may be conserved.


Asunto(s)
Proteínas de Drosophila/antagonistas & inhibidores , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Regulación hacia Abajo , Proteínas de Drosophila/clasificación , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Activación Enzimática , Genes de Insecto/genética , Complejo Represivo Polycomb 1
17.
Nat Commun ; 11(1): 4782, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963223

RESUMEN

Polycomb and Trithorax group proteins maintain stable epigenetic memory of gene expression states for some genes, but many targets show highly dynamic regulation. Here we combine experiment and theory to examine the mechanistic basis of these different modes of regulation. We present a mathematical model comprising a Polycomb/Trithorax response element (PRE/TRE) coupled to a promoter and including Drosophila developmental timing. The model accurately recapitulates published studies of PRE/TRE mediated epigenetic memory of both silencing and activation. With minimal parameter changes, the same model can also recapitulate experimental data for a different PRE/TRE that allows dynamic regulation of its target gene. The model predicts that both cell cycle length and PRE/TRE identity are critical for determining whether the system gives stable memory or dynamic regulation. Our work provides a simple unifying framework for a rich repertoire of PRE/TRE functions, and thus provides insights into  genome-wide Polycomb/Trithorax regulation.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigenómica , Regulación del Desarrollo de la Expresión Génica/genética , Modelos Teóricos , Complejo Represivo Polycomb 1/genética , Animales , División Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Epigénesis Genética , Femenino , Silenciador del Gen , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas , Elementos de Respuesta
18.
Dev Cell ; 5(5): 759-71, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14602076

RESUMEN

Polycomb/Trithorax response elements (PRE/TREs) maintain transcriptional decisions to ensure correct cell identity during development and differentiation. There are thought to be over 100 PRE/TREs in the Drosophila genome, but only very few have been identified due to the lack of a defining consensus sequence. Here we report the definition of sequence criteria that distinguish PRE/TREs from non-PRE/TREs. Using this approach for genome-wide PRE/TRE prediction, we identify 167 candidate PRE/TREs, which map to genes involved in development and cell proliferation. We show that candidate PRE/TREs are bound and regulated by Polycomb proteins in vivo, thus demonstrating the validity of PRE/TRE prediction. Using the larger data set thus generated, we identify three sequence motifs that are conserved in PRE/TRE sequences.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma , Elementos de Respuesta/genética , Factores de Transcripción , Animales , Secuencia de Bases , División Celular/fisiología , Línea Celular , Análisis por Conglomerados , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Complejo Represivo Polycomb 1 , Análisis de Secuencia de ADN , Transgenes
19.
Methods Mol Biol ; 561: 3-19, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19504061

RESUMEN

Transgenesis in Drosophila melanogaster relies upon direct microinjection of embryos and subsequent crossing of surviving adults. The necessity of crossing single flies to screen for transgenic events limits the range of useful transgenesis techniques to those that have a very high frequency of integration, so that about 1 in 10 to 1 in 100 surviving adult flies carry a transgene. Until recently, only random P-element transgenesis fulfilled these criteria. However, recent advances have brought homologous recombination and site-directed integration up to and beyond this level of efficiency. For all transgenesis techniques in Drosophila melanogaster, microinjection of embryos is the central procedure. This chapter gives a detailed protocol for microinjection, and aims to enable the reader to use it for both site-directed integration and for P-element transgenesis.


Asunto(s)
Drosophila melanogaster/genética , Técnicas de Transferencia de Gen , Integrasas/genética , Transgenes/fisiología , Animales , ADN/genética , ADN/metabolismo , Drosophila melanogaster/embriología , Femenino , Microinyecciones , Recombinación Genética
20.
RNA Biol ; 6(2): 129-37, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19270511

RESUMEN

The Polycomb (PcG) and Trithorax (TrxG) proteins are epigenetic regulators that maintain correct expression patterns of several hundred developmentally important genes by binding to DNA regulatory elements called Polycomb/Trithorax Response Elements (PRE/TREs). Many PRE/TREs are transcribed into long non-coding RNAs. Furthermore, many PcG and TrxG proteins bind to RNA, and recent evidence suggests that these RNA interactions are essential for targeting both groups of proteins to specific sites, and modulating their effects on gene expression. We discuss current evidence for the molecular mechanisms by which non-coding RNAs may recruit PcG and TrxG proteins, switch gene expression states, and maintain epigenetic memory.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , ARN no Traducido/fisiología , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Sitios de Unión , Silenciador del Gen , Proteínas del Grupo Polycomb , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA