Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Traffic ; 18(10): 646-657, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28753226

RESUMEN

We analyzed plant-derived α1,4-fucosyltransferase (FucTc) homologs by reporter fusions and focused on representatives of the Brassicaceae and Solanaceae. Arabidopsis thaliana AtFucTc-green fluorescent protein (GFP) or tomato LeFucTc-GFP restored Lewis-a formation in a fuctc mutant, confirming functionality in the trans-Golgi. AtFucTc-GFP partly accumulated at the nuclear envelope (NE) not observed for other homologs or truncated AtFucTc lacking the N-terminus or catalytic domain. Analysis of At/LeFucTc-GFP swap constructs with exchanged cytosolic, transmembrane and stalk (CTS), or only the CT regions, revealed that sorting information resides in the membrane anchor. Other domains of AtFuctc also contribute, since amino-acid changes in the CT region strongly reduced but did not abolish NE localization. By contrast, two N-terminal GFP copies did, indicating localization at the inner nuclear membrane (INM). Tunicamycin treatment of AtFucTc-GFP abolished NE localization and enhanced overlap with an endosomal marker, suggesting involvement of N-glycosylation. Yet neither expression in protoplasts of Arabidopsis N-glycosylation mutants nor elimination of the N-glycosylation site in AtFucTc prevented perinuclear accumulation. Disruption of endoplasmic reticulum (ER)-to-Golgi transport by co-expression of Sar1(H74L) trapped tunicamycin-released AtFucTc-GFP in the ER, however, without NE localization. Since recovery after tunicamycin-washout required de novo-protein synthesis, our analyses suggest that AtFucTc localizes to the NE/INM due to interaction with an unknown (glyco)protein.


Asunto(s)
Arabidopsis/metabolismo , Fucosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Membrana Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endosomas/metabolismo , Fucosiltransferasas/química , Fucosiltransferasas/genética , Glicosilación , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
2.
Plant J ; 94(1): 131-145, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385647

RESUMEN

The oligosaccharyltransferase (OT) complex catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the endoplasmic reticulum. Despite their importance, little is known about the structure and function of plant OT complexes, mainly due to lack of efficient recombinant protein production systems suitable for studies on large plant protein complexes. Here, we purified Arabidopsis OT complexes using the tandem affinity-tagged OT subunit STAUROSPORINE AND TEMPERATURE SENSITIVE3a (STT3a) expressed by an Arabidopsis protein super-expression platform. Mass-spectrometry analysis of the purified complexes identified three essential OT subunits, OLIGOSACCHARYLTRANSFERASE1 (OST1), HAPLESS6 (HAP6), DEFECTIVE GLYCOSYLATION1 (DGL1), and a number of ribosomal subunits. Transmission-electron microscopy showed that STT3a becomes incorporated into OT-ribosome super-complexes formed in vivo, demonstrating that this expression/purification platform is suitable for analysis of large protein complexes. Pairwise in planta interaction analyses of individual OT subunits demonstrated that all subunits identified in animal OT complexes are conserved in Arabidopsis and physically interact with STT3a. Genetic analysis of newly established OT subunit mutants for OST1 and DEFENDER AGAINST APOTOTIC DEATH (DAD) family genes revealed that OST1 and DAD1/2 subunits are essential for the plant life cycle. However, mutations in these individual isoforms produced much milder growth/underglycosylation phenotypes than previously reported for mutations in DGL1, OST3/6 and STT3a.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Hexosiltransferasas/genética , Hexosiltransferasas/aislamiento & purificación , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Microscopía Electrónica de Transmisión , Ribosomas/enzimología , Ribosomas/metabolismo , Purificación por Afinidad en Tándem
3.
Plant Cell ; 26(9): 3792-808, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25238750

RESUMEN

Arabidopsis thaliana KORRIGAN1 (KOR1) is an integral membrane endo-ß1,4-glucanase in the trans-Golgi network and plasma membrane that is essential for cellulose biosynthesis. The extracellular domain of KOR1 contains eight N-glycosylation sites, N1 to N8, of which only N3 to N7 are highly conserved. Genetic evidence indicated that cellular defects in attachment and maturation of these N-glycans affect KOR1 function in vivo, whereas the manner by which N-glycans modulate KOR1 function remained obscure. Site-directed mutagenesis analysis of green fluorescent protein (GFP)-KOR1 expressed from its native regulatory sequences established that all eight N-glycosylation sites (N1 to N8) are used in the wild type, whereas stt3a-2 cells could only inefficiently add N-glycans to less conserved sites. GFP-KOR1 variants with a single N-glycan at nonconserved sites were less effective than those with one at a highly conserved site in rescuing the root growth phenotype of rsw2-1 (kor1 allele). When functionally compromised, GFP-KOR1 tended to accumulate at the tonoplast. GFP-KOR1Δall (without any N-glycan) exhibited partial complementation of rsw2-1; however, root growth of this line was still negatively affected by the absence of complex-type N-glycan modifications in the host plants. These results suggest that one or several additional factor(s) carrying complex N-glycans cooperate(s) with KOR1 in trans to grant proper targeting/functioning in plant cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulasa/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , Secuencias de Aminoácidos , Arabidopsis/enzimología , Membrana Celular/metabolismo , Secuencia Conservada , Epistasis Genética , Genes Reporteros , Glicosilación , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hexosiltransferasas/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Transporte de Proteínas , Protoplastos/metabolismo , Fracciones Subcelulares/metabolismo , Red trans-Golgi/metabolismo
4.
J Biol Chem ; 286(26): 22955-64, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21478158

RESUMEN

Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry ß1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-ß1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Epítopos/inmunología , Fucosa/inmunología , Polisacáridos/inmunología , Xilosa/inmunología , Alelos , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epítopos/genética , Epítopos/metabolismo , Fucosa/genética , Fucosa/metabolismo , Glicosilación , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Polisacáridos/genética , Polisacáridos/metabolismo , Conejos , Xilosa/genética , Xilosa/metabolismo , alfa-Manosidasa/inmunología , alfa-Manosidasa/metabolismo
5.
Plant Physiol ; 156(3): 1464-80, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21571669

RESUMEN

Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B'γ (B'γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b'γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b'γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b'γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b'γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b'γ leaves. We suggest that the specific B'γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Luz , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Southern Blotting , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células del Mesófilo/citología , Células del Mesófilo/efectos de la radiación , Células del Mesófilo/ultraestructura , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Proteína Fosfatasa 2/genética , Subunidades de Proteína/genética , Proteómica , Especies Reactivas de Oxígeno/metabolismo
6.
J Biol Chem ; 285(7): 4629-36, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20007973

RESUMEN

N-Glycans attached to the ectodomains of plasma membrane pattern recognition receptors constitute likely initial contact sites between plant cells and invading pathogens. To assess the role of N-glycans in receptor-mediated immune responses, we investigated the functionality of Arabidopsis receptor kinases EFR and FLS2, sensing bacterial translation elongation factor Tu (elf18) and flagellin (flg22), respectively, in N-glycosylation mutants. As revealed by binding and responses to elf18 or flg22, both receptors tolerated immature N-glycans induced by mutations in various Golgi modification steps. EFR was specifically impaired by loss-of-function mutations in STT3A, a subunit of the endoplasmic reticulum resident oligosaccharyltransferase complex. FLS2 tolerated mild underglycosylation occurring in stt3a but was sensitive to severe underglycosylation induced by tunicamycin treatment. EFR accumulation was significantly reduced when synthesized without N-glycans but to lesser extent when underglycosylated in stt3a or mutated in single amino acid positions. Interestingly, EFR(N143Q) lacking a single conserved N-glycosylation site from the EFR ectodomain accumulated to reduced levels and lost the ability to bind its ligand and to mediate elf18-elicited oxidative burst. However, EFR-YFP protein localization and peptide:N-glycosidase F digestion assays support that both EFR produced in stt3a and EFR(N143Q) in wild type cells correctly targeted to the plasma membrane via the Golgi apparatus. These results indicate that a single N-glycan plays a critical role for receptor abundance and ligand recognition during plant-pathogen interactions at the cell surface.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Inmunidad Innata/fisiología , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Biología Computacional , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glicosilación/efectos de los fármacos , Inmunidad Innata/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Receptores de Reconocimiento de Patrones/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tunicamicina/farmacología
7.
Plant Signal Behav ; 10(5): e1024397, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039485

RESUMEN

Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation of KOR1 at tonoplasts. The degree of successful TGN localization of KOR1 agreed well with in vivo-complementation efficacy of the rsw2-1 mutant, suggesting non-catalytic functions in the TGN. A dynamic interaction network involving microtubules, CSCs, KOR1, and currently unidentified glycoprotein component(s) likely determines stress-triggered re-organization of cellulose biosynthesis and resumption of cell-wall growth under stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulasa/metabolismo , Celulosa/biosíntesis , Proteínas de la Membrana/metabolismo , Glicosilación , Presión Osmótica , Polisacáridos/metabolismo , Red trans-Golgi/metabolismo
8.
Plant Physiol ; 148(3): 1354-67, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18768906

RESUMEN

We compare three Arabidopsis (Arabidopsis thaliana) complex glycan1 (cgl1) alleles and report on genetic interaction with staurosporin and temperature sensitive3a (stt3a). STT3a encodes a subunit of oligosaccharyltransferase that affects efficiency of N-glycan transfer to nascent secretory proteins in the endoplasmic reticulum; cgl1 mutants lack N-acetyl-glucosaminyltransferase I activity and are unable to form complex N-glycans in the Golgi apparatus. By studying CGL1-green fluorescent protein fusions in transient assays, we show that the extra N-glycosylation site created by a point mutation in cgl1 C5 is used in planta and interferes with folding of full-length membrane-anchored polypeptides in the endoplasmic reticulum. Tunicamycin treatment or expression in the stt3a-2 mutant relieved the folding block, and migration to Golgi stacks resumed. Complementation tests with C5-green fluorescent protein and other N-glycosylation variants of CGL1 demonstrated that suppression of aberrant N-glycosylation restores activity. Interestingly, CGL1 seems to be functional also as nonglycosylated enzyme. Two other cgl1 alleles showed splicing defects of their transcripts. In cgl1 C6, a point mutation affects the 3' splice site of intron 14, resulting in frame shifts; in cgl1-T, intron 11 fails to splice due to insertion of a T-DNA copy. Introgression of stt3a-2 did not restore complex glycan formation in cgl1 C6 or cgl1-T but suppressed the N-acetyl-glucosaminyltransferase I defect in cgl1 C5. Root growth assays revealed synergistic effects in double mutants cgl1 C6 stt3a-2 and cgl1-T stt3a-2 only. Besides demonstrating the conditional nature of cgl1 C5 in planta, our observations with loss-of-function alleles cgl1 C6 and cgl1-T in the stt3a-2 underglycosylation background prove that correct N-glycosylation is important for normal root growth and morphology in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Arabidopsis/genética , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA