Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Differentiation ; 128: 83-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36114074

RESUMEN

Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of NR5A1 during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous NR5A1 expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without NR5A1 activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of NR5A1 expression. Of those, we identified novel gonad-related putative NR5A1 targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, NR5A1 activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of NR5A1 we have for the first time, been able to examine in detail the effects of NR5A1 in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infertilidad , Humanos , Masculino , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Mutación , Células Madre Pluripotentes Inducidas/metabolismo , Gónadas/metabolismo , Receptores Depuradores de Clase A/genética
2.
Gastroenterology ; 160(1): 245-259, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32941878

RESUMEN

BACKGROUND & AIMS: Mutations in the APC gene and other genes in the Wnt signaling pathway contribute to development of colorectal carcinomas. R-spondins (RSPOs) are secreted proteins that amplify Wnt signaling in intestinal stem cells. Alterations in RSPO genes have been identified in human colorectal tumors. We studied the effects of RSPO1 overexpression in ApcMin/+ mutant mice. METHODS: An adeno associated viral vector encoding RSPO1-Fc fusion protein, or control vector, was injected into ApcMin/+mice. Their intestinal crypts were isolated and cultured as organoids. which were incubated with or without RSPO1-Fc and an inhibitor of transforming growth factor beta receptor (TGFBR). Livers were collected from mice and analyzed by immunohistochemistry. Organoids and adenomas were analyzed by quantitative reverse-transcription PCR, single cell RNA sequencing, and immunohistochemistry. RESULTS: Intestines from Apc+/+ mice injected with the vector encoding RSPO1-Fc had significantly deeper crypts, longer villi, with increased EdU labeling, indicating increased proliferation of epithelial cells, in comparison to mice given control vector. AAV-RSPO1-Fc-transduced ApcMin/+ mice also developed fewer and smaller intestinal tumors and had significantly longer survival times. Adenomas of ApcMin/+ mice injected with the RSPO1-Fc vector showed a rapid increase in apoptosis and in the expression of Wnt target genes, followed by reduced expression of messenger RNAs and proteins regulated by the Wnt pathway, reduced cell proliferation, and less crypt branching than adenomas of mice given the control vector. Addition of RSPO1 reduced the number of adenoma organoids derived from ApcMin/+ mice and suppressed expression of Wnt target genes but increased phosphorylation of SMAD2 and transcription of genes regulated by SMAD. Inhibition of TGFBR signaling in organoids stimulated with RSPO1-Fc restored organoid formation and expression of genes regulated by Wnt. The TGFBR inhibitor restored apoptosis in adenomas from ApcMin/+ mice expressing RSPO1-Fc back to the same level as in the adenomas from mice given the control vector. CONCLUSIONS: Expression of RSPO1 in ApcMin/+ mice increases apoptosis and reduces proliferation and Wnt signaling in adenoma cells, resulting in development of fewer and smaller intestinal tumors and longer mouse survival. Addition of RSPO1 to organoids derived from adenomas inhibits their growth and promotes proliferation of intestinal stem cells that retain the APC protein; these effects are reversed by TGFB inhibitor. Strategies to increase the expression of RSPO1 might be developed for the treatment of intestinal adenomas.


Asunto(s)
Adenoma/patología , Neoplasias Intestinales/patología , Trombospondinas/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Vía de Señalización Wnt/fisiología , Adenoma/etiología , Animales , Modelos Animales de Enfermedad , Neoplasias Intestinales/etiología , Ratones , Organoides
3.
Calcif Tissue Int ; 110(4): 504-517, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35024891

RESUMEN

INTRODUCTION: In postmenopausal osteoporosis, hormonal changes lead to increased bone turnover and metabolic alterations including increased fat mass and insulin resistance. Activin type IIB receptors bind several growth factors of the TGF-ß superfamily and have been demonstrated to increase muscle and bone mass. We hypothesized that ActRIIB-Fc treatment could improve bone and muscle mass, inhibit fat accumulation, and restore metabolic alterations in an ovariectomy (OVX) model of postmenopausal osteoporosis. MATERIALS AND METHODS: Female C57Bl/6 N mice were subjected to SHAM or OVX procedures and received intraperitoneal injections of either PBS or ActRIIB-Fc (5 mg/kg) once weekly for 7 weeks. Glucose and insulin tolerance tests (GTT and ITT, respectively) were performed at 7 and 8 weeks, respectively. Bone samples were analyzed with micro-computed tomography imaging, histomorphometry, and quantitative RT-PCR. RESULTS: Bone mass decreased in OVX PBS mice compared to the SHAM PBS group but ActRIIB-Fc was able to prevent these changes as shown by µCT and histological analyses. This was due to decreased osteoclast numbers and function demonstrated by histomorphometric and qRT-PCR analyses. OVX induced adipocyte hypertrophy that was rescued by ActRIIB-Fc, which also decreased systemic adipose tissue accumulation. OVX itself did not affect glucose levels in GTT but ActRIIB-Fc treatment resulted in impaired glucose clearance in both SHAM and OVX groups. OVX induced mild insulin resistance in ITT but ActRIIB-Fc treatment did not affect this. CONCLUSION: Our results reinforce the potency of ActRIIB-Fc as a bone-enhancing agent but also bring new insight into the metabolic effects of ActRIIB-Fc in normal and OVX mice.


Asunto(s)
Receptores de Activinas Tipo II , Enfermedades Óseas Metabólicas , Resistencia a la Insulina , Osteoporosis Posmenopáusica , Receptores de Activinas Tipo II/uso terapéutico , Tejido Adiposo , Animales , Femenino , Glucosa , Humanos , Ratones , Ratones Endogámicos C57BL , Ovariectomía , Microtomografía por Rayos X
4.
FASEB J ; 35(3): e21387, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33559263

RESUMEN

Blocking of myostatin and activins effectively counteracts muscle atrophy. However, the potential interaction with physical inactivity and fasting in the regulation of muscle protein synthesis is poorly understood. We used blockade of myostatin and activins by recombinant adeno-associated virus (rAAV)-mediated follistatin (FS288) overexpression in mouse tibialis anterior muscle. To investigate the effects on muscle protein synthesis, muscles were collected 7 days after rAAV-injection in the nighttime or in the daytime representing high and low levels of activity and feeding, respectively, or after overnight fasting, refeeding, or ad libitum feeding. Muscle protein synthesis was increased by FS288 independent of the time of the day or the feeding status. However, the activation of mTORC1 signaling by FS288 was attenuated in the daytime and by overnight fasting. FS288 also increased the amount of mTOR colocalized with lysosomes, but did not alter their localization toward the sarcolemma. This study shows that FS288 gene delivery increases muscle protein synthesis largely independent of diurnal fluctuations in physical activity and food intake or feeding status, overriding the physiological signals. This is important for eg cachectic and sarcopenic patients with reduced physical activity and appetite. The FS288-induced increase in mTORC1 signaling and protein synthesis may be in part driven by increased amount of mTOR colocalized with lysosomes, but not by their localization toward sarcolemma.


Asunto(s)
Ayuno/fisiología , Folistatina/genética , Terapia Genética , Proteínas Musculares/biosíntesis , Atrofia Muscular/terapia , Condicionamiento Físico Animal , Animales , Ritmo Circadiano/fisiología , Dependovirus/genética , Metabolismo Energético , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones , Ratones Endogámicos C57BL
5.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33905505

RESUMEN

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/inmunología , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Humanos , Técnicas para Inmunoenzimas , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Pruebas de Neutralización , Fosfoproteínas/inmunología , SARS-CoV-2/inmunología , Sensibilidad y Especificidad
6.
J Infect Dis ; 223(9): 1544-1554, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33625513

RESUMEN

BACKGROUND: Activins are members of the transforming growth factor-ß superfamily implicated in the pathogenesis of several immunoinflammatory disorders. Based on our previous studies demonstrating that overexpression of activin-A in murine lung causes pathology sharing key features of coronavirus disease 2019 (COVID-19), we hypothesized that activins and their natural inhibitor follistatin might be particularly relevant to COVID-19 pathophysiology. METHODS: Activin-A, activin-B, and follistatin were retrospectively analyzed in 574 serum samples from 263 COVID-19 patients hospitalized in 3 independent centers, and compared with demographic, clinical, and laboratory parameters. Optimal scaling with ridge regression was used to screen variables and establish a prediction model. RESULT: The activin/follistatin axis was significantly deregulated during the course of COVID-19, correlated with severity and independently associated with mortality. FACT-CLINYCoD, a scoring system incorporating follistatin, activin-A, activin-B, C-reactive protein, lactate dehydrogenase, intensive care unit admission, neutrophil/lymphocyte ratio, age, comorbidities, and D-dimers, efficiently predicted fatal outcome (area under the curve [AUC], 0.951; 95% confidence interval, .919-.983; P <10-6). Two validation cohorts indicated similar AUC values. CONCLUSIONS: This study demonstrates a link between activin/follistatin axis and COVID-19 mortality and introduces FACT-CLINYCoD, a novel pathophysiology-based tool that allows dynamic prediction of disease outcome, supporting clinical decision making.


Asunto(s)
Activinas/sangre , COVID-19/sangre , COVID-19/mortalidad , Folistatina/sangre , SARS-CoV-2 , Anciano , Biomarcadores , COVID-19/fisiopatología , Estudios de Cohortes , Técnicas de Apoyo para la Decisión , Femenino , Grecia/epidemiología , Mortalidad Hospitalaria , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
7.
FASEB J ; 34(8): 9911-9924, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32427381

RESUMEN

Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blockade of ACVR2B ligands did not rescue the heart from ischemic injury or alleviate post-MI remodeling and ischemic HF. Collectively, ACVR2B-Fc did not affect cardiomyocyte hypertrophy, fibrosis, angiogenesis, nor factors associated with cardiac regeneration except modification of certain genes involved in metabolism or cell growth/survival. ACVR2B-Fc, however, was able to reduce skeletal muscle wasting in chronic ischemic HF, accompanied by reduced LC3II as a marker of autophagy and increased mTOR signaling and Cited4 expression as markers of physiological hypertrophy in quadriceps muscle. Our results ascertain pharmacological blockade of ACVR2B ligands as a possible therapy for skeletal muscle wasting in ischemic HF. Pharmacological blockade of ACVR2B ligands preserved myofiber size in ischemic HF, but did not compromise cardiac function nor exacerbate cardiac remodeling after ischemic injury.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Modelos Animales de Enfermedad , Corazón/fisiología , Atrofia Muscular/prevención & control , Isquemia Miocárdica/complicaciones , Factores de Transcripción/metabolismo , Remodelación Ventricular/fisiología , Receptores de Activinas Tipo II/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Transducción de Señal , Factores de Transcripción/genética
8.
Circ Res ; 124(6): 846-855, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30636542

RESUMEN

RATIONALE: Although many familial cases of pulmonary arterial hypertension exhibit an autosomal dominant mode of inheritance with the majority having mutations in essential constituents of the BMP (bone morphogenetic protein) signaling, the specific contribution of the long-term loss of signal transduction triggered by the BMPR2 (type 2 BMP receptor) remains poorly characterized. OBJECTIVE: To investigate the role of BMP9, the main ligand of ALK1 (Activin receptor-like kinase 1)/BMPR2 heterocomplexes, in pulmonary hypertension. METHOD AND RESULTS: The absence of BMP9 in Bmp9-/- mice and its inhibition in C57BL/6 mice using neutralizing anti-BMP9 antibodies substantially prevent against chronic hypoxia-induced pulmonary hypertension judged by right ventricular systolic pressure measurement, right ventricular hypertrophy, and pulmonary distal arterial muscularization. In agreement with these observations, we found that the BMP9/BMP10 ligand trap ALK1ECD administered in monocrotaline or Sugen/hypoxia (SuHx) rats substantially attenuate proliferation of pulmonary vascular cells, inflammatory cell infiltration, and regresses established pulmonary hypertension in rats. Our data obtained in human pulmonary endothelial cells derived from controls and pulmonary arterial hypertension patients indicate that BMP9 can affect the balance between endothelin-1, apelin, and adrenomedullin. We reproduced these in vitro observations in mice chronically exposed to hypoxia, with Bmp9-/- mice exhibiting lower mRNA levels of the vasoconstrictor peptide ET-1 (endothelin-1) and higher levels of the 2 potent vasodilator factors apelin and ADM (adrenomedullin) compared with Bmp9+/+ littermates. CONCLUSIONS: Taken together, our data indicate that the loss of BMP9, by deletion or inhibition, has beneficial effects against pulmonary hypertension onset and progression.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento/antagonistas & inhibidores , Hipertensión Pulmonar/prevención & control , Receptores de Activinas Tipo II/farmacología , Animales , Células Cultivadas , Endotelina-1/genética , Factor 2 de Diferenciación de Crecimiento/fisiología , Humanos , Hipoxia/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar
9.
Mol Ther ; 28(8): 1833-1845, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32497513

RESUMEN

Systemic skin-selective therapeutics would be a major advancement in the treatment of diseases affecting the entire skin, such as recessive dystrophic epidermolysis bullosa (RDEB), which is caused by mutations in the COL7A1 gene and manifests in transforming growth factor-ß (TGF-ß)-driven fibrosis and malignant transformation. Homing peptides containing a C-terminal R/KXXR/K motif (C-end rule [CendR] sequence) activate an extravasation and tissue penetration pathway for tumor-specific drug delivery. We have previously described a homing peptide CRKDKC (CRK) that contains a cryptic CendR motif and homes to angiogenic blood vessels in wounds and tumors, but it cannot penetrate cells or tissues. In this study, we demonstrate that removal of the cysteine from CRK to expose the CendR sequence confers the peptide novel ability to home to normal skin. Fusion of the truncated CRK (tCRK) peptide to the C terminus of an extracellular matrix protein decorin (DCN), a natural TGF-ß inhibitor, resulted in a skin-homing therapeutic molecule (DCN-tCRK). Systemic DCN-tCRK administration in RDEB mice led to inhibition of TGF-ß signaling in the skin and significant improvement in the survival of RDEB mice. These results suggest that DCN-tCRK has the potential to be utilized as a novel therapeutic compound for the treatment of dermatological diseases such as RDEB.


Asunto(s)
Epidermólisis Ampollosa/etiología , Epidermólisis Ampollosa/metabolismo , Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Animales , Biomarcadores , Modelos Animales de Enfermedad , Epidermólisis Ampollosa/patología , Fibrosis , Inmunohistoquímica , Ratones , Ratones Noqueados , Neuropilina-1/metabolismo , Péptidos/química , Péptidos/farmacología , Unión Proteica , Proteínas Recombinantes de Fusión/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de Heridas/efectos de los fármacos
10.
Exp Cell Res ; 385(2): 111685, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31647919

RESUMEN

Aberrant activation of signalling pathways has been postulated to promote age related changes in skeletal muscle. Cell signalling activation requires not only the expression of ligands and receptors but also an appropriate environment that facilitates their interaction. Here we first examined the expression of SULF1/SULF2 and members of RTK (receptor tyrosine kinase) and the Wnt family in skeletal muscle of normal and a mouse model of accelerated ageing. We show that SULF1/SULF2 and these signalling components, a feature of early muscle development are barely detectable in early postnatal muscle. Real time qPCR and immunocytochemical analysis showed gradual but progressive up-regulation of SULF1/SULF2 and RTK/Wnt proteins not only in the activated satellite cells but also on muscle fibres that gradually increased with age. Satellite cells on isolated muscle fibres showed spontaneous in vivo satellite cell activation and progressive reduction in proliferative potential and responsiveness to HGF (hepatocyte growth factor) and dysregulated myogenic differentiation with age. Finally, we show that SULF1/SULF2 and RTK/Wnt signalling components are expressed in progeric mouse muscles at earlier stage but their expression is attenuated by an intervention that promotes muscle repair and growth.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/crecimiento & desarrollo , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células Satélite del Músculo Esquelético/citología , Sulfatasas/genética , Sulfatasas/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Proteínas Wnt/metabolismo
11.
Mol Ther ; 27(3): 600-610, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30765322

RESUMEN

Activin A and myostatin, members of the transforming growth factor (TGF)-ß superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function following IR. ACVR2B-Fc modified cardiac metabolism, LV mitochondrial respiration, as well as cardiac phenotype toward physiological hypertrophy. Similar to its protective role in IR injury in vivo, ACVR2B-Fc antagonized SMAD2 signaling and cell death in cardiomyocytes that were subjected to hypoxic stress. ACVR2B ligand myostatin was found to exacerbate hypoxic stress. In addition to acute cardioprotection in ischemia, ACVR2B-Fc provided beneficial effects on cardiac function in prolonged cardiac stress in cardiotoxicity model. By blocking myostatin, ACVR2B-Fc potentially reduces cardiomyocyte death and modifies cardiomyocyte metabolism for hypoxic conditions to protect the heart from IR injury.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Proteína Smad2/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miostatina/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína Smad2/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Am J Physiol Endocrinol Metab ; 316(5): E852-E865, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860875

RESUMEN

Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups representing 1) amino acids, 2) energy sources, and 3) nucleotide-related intermediates. Muscle metabolomics revealed increased content of free phenylalanine in cancer that strongly correlated with the loss of body mass within the last 2 days of the experiment. This correlation was also detected in serum. Decreased ribosomal RNA content and phosphorylation of a marker of pyrimidine synthesis revealed changes in nucleotide metabolism in cancer. Overall, the effect of the experimental C26 cancer predominated over blocking ACVR2B ligands in both muscle and serum. However, the level of methyl phosphate, which was decreased in muscle in cancer, was restored by sACVR2B-Fc treatment. In conclusion, experimental cancer affected muscle and blood metabolomes mostly independently of blocking ACVR2B ligands. Of the affected metabolites, we have identified free phenylalanine as a promising biomarker of muscle atrophy or cachexia. Finally, the decreased capacity for pyrimidine nucleotide and protein synthesis in tumor-bearing mice opens up new avenues in cachexia research.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Caquexia/metabolismo , Neoplasias del Colon/metabolismo , Metaboloma/fisiología , Músculo Esquelético/metabolismo , Aminoácidos/metabolismo , Animales , Caquexia/etiología , Línea Celular Tumoral , Neoplasias del Colon/complicaciones , Fragmentos Fc de Inmunoglobulinas/farmacología , Masculino , Redes y Vías Metabólicas , Metaboloma/efectos de los fármacos , Ratones , Músculo Esquelético/efectos de los fármacos , Organofosfatos/metabolismo , Fenilalanina/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Nucleótidos de Pirimidina/metabolismo , Proteínas Recombinantes
13.
Gynecol Oncol ; 144(1): 83-89, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27871721

RESUMEN

OBJECTIVE: Evaluation of circulating tumor markers in ovarian cancer is crucial for optimal patient care. The goal of this study was to verify the most accurate circulating tumor markers for the diagnosis and follow-up of adult-type granulosa cell tumors (AGCTs). METHODS: The levels of circulating human epididymis protein 4 (HE4) and carbohydrate antigen 125 (CA125), together with AGCT markers inhibin B and anti-Müllerian hormone (AMH), were measured in 135 samples from AGCT patients, 37 epithelial ovarian carcinoma (EOC) patients, and 40 endometrioma (ENDO) patients. The levels were plotted with receiver operating characteristic (ROC) graphs, and the area under the curves (AUC) of the different markers were calculated and compared. RESULTS: HE4 levels were significantly lower in AGCTs than in EOCs (p<0.0001). CA125 levels were above 35IU/l in 25% of AGCT patients and 47.5% of ENDO patients, whereas inhibin B and AMH levels were elevated only in patients with AGCTs. In the AUC comparison analyses, inhibin B alone was sufficient to differentiate AGCT from EOC. In differentiating AGCT from ENDO, inhibin B and AMH performed similarly, and the combination of inhibin B and AMH increased the accuracy compared to either marker alone (sensitivity, 100%; specificity, 93%). Among AGCT patients, inhibin B was the best marker for detecting the presence of AGCT. CONCLUSIONS: HE4 and CA125 levels were low in AGCTs, and inhibin B was the most accurate circulating biomarker in distinguishing AGCTs from EOCs and from ENDOs. Inhibin B was also the best single marker for AGCT follow-up.


Asunto(s)
Biomarcadores de Tumor/sangre , Endometriosis/sangre , Endometriosis/diagnóstico , Tumor de Células de la Granulosa/sangre , Tumor de Células de la Granulosa/diagnóstico , Neoplasias Glandulares y Epiteliales/sangre , Neoplasias Glandulares y Epiteliales/diagnóstico , Adulto , Cuidados Posteriores , Anciano , Anciano de 80 o más Años , Hormona Antimülleriana/sangre , Área Bajo la Curva , Antígeno Ca-125/sangre , Diagnóstico Diferencial , Femenino , Humanos , Inhibinas/sangre , Persona de Mediana Edad , Proteínas/metabolismo , Curva ROC , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP
14.
Transpl Int ; 30(1): 96-107, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27732750

RESUMEN

Activins are members of the transforming growth factor-beta (TGF-ß) superfamily of cytokines. They play critical roles in the onset of acute and chronic inflammatory responses. The aim of this study was to investigate how activin inhibition affects acute kidney injury and inflammation after transplantation. The study was carried out in kidney transplantation and renal ischemia-reperfusion models in the rat. Soluble activin type 2 receptor (sActRIIB-Fc) was used to inhibit activin signaling. Transplantation groups were as follows: (i) cyclosporine A (CsA) (ii) CsA + sActRIIB-Fc, (iii) CsA+ inactive protein control Fc-G1. IRI groups were as follows: (i) no treatment, (ii) sActRIIB-Fc. Serum activin B concentration was significantly elevated after transplantation and IRI, whereas activin A was produced locally in renal allografts. Activin inhibition efficiently limited neutrophil, macrophage, and dendritic cell infiltration to the allografts measured 72 h after transplantation. In addition, sActRIIB-Fc treatment modulated serum cytokine response after transplantation and reduced the early accumulation of fibroblasts in the graft interstitium. In conclusion activin inhibition reduces the innate immune response early after renal transplantation in the rat. It also limits the accumulation of fibroblasts in the graft suggesting that activins may be involved in the fibrogenic signaling already early after kidney transplantation.


Asunto(s)
Activinas/antagonistas & inhibidores , Aloinjertos/inmunología , Inmunidad Innata , Trasplante de Riñón , Riñón/inmunología , Activinas/metabolismo , Animales , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/metabolismo , Humanos , Inflamación , Masculino , Proyectos Piloto , Ratas , Ratas Wistar , Insuficiencia Renal/cirugía , Daño por Reperfusión , Transducción de Señal , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Trasplante Homólogo
15.
BMC Musculoskelet Disord ; 18(1): 20, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28103859

RESUMEN

BACKGROUND: Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. METHODS: Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. RESULTS: Treatment of mdx mice with ActRIIB-Fc resulted in significantly increased body and muscle weights in both sedentary and exercising mice. Femoral µCT analysis showed increased bone volume and trabecular number (BV/TV +80%, Tb.N +70%, P < 0.05) in both ActRIIB-Fc treated groups. Running also resulted in increased bone volume and trabecular number in PBS-treated mice. However, there was no significant difference in trabecular bone structure or volumetric bone mineral density between the ActRIIB-Fc and ActRIIB-Fc-R indicating that running did not further improve bone structure in ActRIIB-Fc-treated mice. ActRIIB-Fc increased bone mass also in vertebrae (BV/TV +20%, Tb.N +30%, P < 0.05) but the effects were more modest. The number of osteoclasts was decreased in histological analysis and the expression of several osteoblast marker genes was increased in ActRIIB-Fc treated mice suggesting decreased bone resorption and increased bone formation in these mice. Increased bone mass in femurs translated into enhanced bone strength in biomechanical testing as the maximum force and stiffness were significantly elevated in ActRIIB-Fc-treated mice. CONCLUSIONS: Our results indicate that treatment of mdx mice with the soluble ActRIIB-Fc results in a robust increase in bone mass, without any additive effect by voluntary running. Thus ActRIIB-Fc could be an attractive option in the treatment of musculoskeletal disorders.


Asunto(s)
Receptores de Activinas Tipo II/uso terapéutico , Densidad Ósea/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne , Animales , Resorción Ósea/patología , Resorción Ósea/prevención & control , Huesos/efectos de los fármacos , Huesos/patología , Terapia Combinada , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular Animal/terapia , Tamaño de los Órganos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Condicionamiento Físico Animal , Solubilidad
16.
Proc Natl Acad Sci U S A ; 111(21): E2229-36, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24825889

RESUMEN

In the majority of microsatellite-stable colorectal cancers (CRCs), an initiating mutation occurs in the adenomatous polyposis coli (APC) or ß-catenin gene, activating the ß-catenin/TCF pathway. The progression of resulting adenomas is associated with oncogenic activation of KRas and inactivation of the p53 and TGF-ß/Smad functions. Most established CRC cell lines contain mutations in the TGF-ß/Smad pathway, but little is known about the function of TGF-ß in the early phases of intestinal tumorigenesis. We used mouse and human ex vivo 3D intestinal organoid cultures and in vivo mouse models to study the effect of TGF-ß on the Lgr5(+) intestinal stem cells and their progeny in intestinal adenomas. We found that the TGF-ß-induced apoptosis in Apc-mutant organoids, including the Lgr5(+) stem cells, was mediated by up-regulation of the BH3-only proapoptotic protein Bcl-2-like protein 11 (Bim). BH3-mimetic compounds recapitulated the effect of Bim not only in the adenomas but also in human CRC organoids that had lost responsiveness to TGF-ß-induced apoptosis. However, wild-type intestinal crypts were markedly less sensitive to TGF-ß than Apc-mutant adenomas, whereas the KRas oncogene increased resistance to TGF-ß via the activation of the Erk1/2 kinase pathway, leading to Bim down-regulation. Our studies identify Bim as a critical mediator of TGF-ß-induced apoptosis in intestinal adenomas and show that the common progression mutations modify Bim levels and sensitivity to TGF-ß during intestinal adenoma development.


Asunto(s)
Adenoma/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Intestinales/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteína 11 Similar a Bcl2 , Western Blotting , Células Cultivadas , Cromatografía en Gel , Cartilla de ADN/genética , Citometría de Flujo , Humanos , Ratones , Análisis por Micromatrices , Organoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo
17.
J Am Soc Nephrol ; 27(12): 3589-3599, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27020852

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), characterized by the formation of numerous kidney cysts, is caused by PKD1 or PKD2 mutations and affects 0.1% of the population. Although recent clinical studies indicate that reduction of cAMP levels slows progression of PKD, this finding has not led to an established safe and effective therapy for patients, indicating the need to find new therapeutic targets. The role of TGF-ß in PKD is not clearly understood, but nuclear accumulation of phosphorylated SMAD2/3 in cyst-lining cells suggests the involvement of TGF-ß signaling in this disease. In this study, we ablated the TGF-ß type 1 receptor (also termed activin receptor-like kinase 5) in renal epithelial cells of PKD mice, which had little to no effect on the expression of SMAD2/3 target genes or the progression of PKD. Therefore, we investigated whether alternative TGF-ß superfamily ligands account for SMAD2/3 activation in cystic epithelial cells. Activins are members of the TGF-ß superfamily and drive SMAD2/3 phosphorylation via activin receptors, but activins have not been studied in the context of PKD. Mice with PKD had increased expression of activin ligands, even at early stages of disease. In addition, treatment with a soluble activin receptor IIB fusion (sActRIIB-Fc) protein, which acts as a soluble trap to sequester activin ligands, effectively inhibited cyst formation in three distinct mouse models of PKD. These data point to activin signaling as a key pathway in PKD and a promising target for therapy.


Asunto(s)
Activinas/antagonistas & inhibidores , Enfermedades Renales Poliquísticas/prevención & control , Transducción de Señal , Animales , Progresión de la Enfermedad , Células Epiteliales , Femenino , Riñón/citología , Masculino , Ratones , Enfermedades Renales Poliquísticas/etiología , Proteínas Recombinantes de Fusión/farmacología , Proteína Smad2/fisiología , Proteína smad3/fisiología , Factores de Tiempo
18.
Exp Cell Res ; 332(1): 102-15, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25557874

RESUMEN

Activin-A and activin-B, members of the TGF-ß superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth.


Asunto(s)
Activinas/metabolismo , Movimiento Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Proteína smad3/metabolismo , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo II/metabolismo , Activinas/genética , Anciano , Activación Enzimática , Femenino , Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Masculino , Mesotelioma/patología , Mesotelioma Maligno , Persona de Mediana Edad , Invasividad Neoplásica
19.
Am J Physiol Endocrinol Metab ; 309(6): E557-67, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26219865

RESUMEN

Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth.


Asunto(s)
Folistatina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Insulina/metabolismo , Músculo Esquelético/efectos de los fármacos , Miostatina/genética , Receptor IGF Tipo 1/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo , Folistatina/efectos de los fármacos , Folistatina/metabolismo , Hipertrofia/metabolismo , Hipofisectomía , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miostatina/efectos de los fármacos , Miostatina/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
20.
Pediatr Res ; 77(6): 749-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25760549

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD) is one of the leading causes of morbidity and mortality in babies born prematurely, yet there is no curative treatment. In recent years, a number of inhibitors against TGFß signaling have been tested for their potential to prevent neonatal injury associated with hyperoxia, which is a contributing factor of BPD. In this study, we assessed the contribution of activin A-a member of the TGFß superfamily-to the development of hyperoxia-induced lung injury in neonatal mice. METHODS: We placed newborn C57Bl6 mouse pups in continuous hyperoxia (85% O2) to mimic many aspects of BPD including alveolar simplification and pulmonary inflammation. The pups were administered activin A receptor type IIB-Fc antagonist (ActRIIB-Fc) at 5 mg/kg or follistatin at 0.1 mg/kg on postnatal days 4, 7, 10, and 13. RESULTS: Treatment with ActRIIB-Fc and follistatin protected against hyperoxia-induced growth retardation. ActRIIB-Fc also reduced pulmonary leukocyte infiltration, normalized tissue: airspace ratio and increased septal crest density. These findings were associated with reduced phosphorylation of Smad3 and decreased matrix metalloproteinase (MMP)-9 activity. CONCLUSION: This study suggests that activin A signaling may contribute to the pathology of bronchopulmonary dysplasia.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Activinas/metabolismo , Displasia Broncopulmonar/prevención & control , Hiperoxia/patología , Fragmentos Fc de Inmunoglobulinas/farmacología , Pulmón/patología , Animales , Animales Recién Nacidos , Folistatina/farmacología , Trastornos del Crecimiento/prevención & control , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Proteína smad3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA