Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(12): 20491-20502, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859430

RESUMEN

The Line Height Absorption (LHA) method uses absorption of light to estimate chlorophyll-a. While most users consider regional variability and apply corrections, the effect of temporal variability is typically not explored. The Northern Gulf of Alaska (NGA) was selected for this study because there was no published regional value and its large swings in temporal productivity would make it a good candidate to evaluate the effect of temporal variability on the relationship. The mean NGA value of 0.0114 obtained here should be treated with caution, as variation in the slope of the relationship (aLH*), and thus chlorophyll-a estimates, in the NGA region varied by ∼25% between spring (aLH* = 0.0109) and summer (aLH* = 0.0137). Results suggest that this change is driven by a shift in pigment packaging and cell size associated with changes in mixed layer depth and stratification. Consideration of how temporal variability may affect the accuracy of the LHA method in other regions is thus recommended.

2.
Geophys Res Lett ; 46(11): 6034-6040, 2019 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33505102

RESUMEN

The Southern Ocean is a key player in regulating the planet's biogeochemistry, productivity, and climate. Ocean color data from two NASA satellites show statistically significant increases in the concentration of chlorophyll in all sectors of the Southern Ocean, particularly in the Sub-Antarctic Zone and Permanently Open Ocean Zone. The smallest changes were observed in the Atlantic and Pacific sectors of the Sub-Tropical Zone. These trends seem accentuated by higher chlorophyll concentrations during the austral winter. Increases in the annual and wintertime chlorophyll concentrations can have implications for the Southern Ocean biological pump and ocean productivity and higher trophic levels. PLAIN LANGUAGE SUMMARY: The Southern Ocean is getting greener because the amount of marine plants (phytoplankton) has been increasing in the last 21 years. These changes appear to be happening faster during the winter, which suggests that the growing season is getting longer. This is important because the Southern Ocean has a big role in the biology and chemistry of the oceans, and in regulating the Earth's climate. This work was done using 21 years of data from two NASA satellites.

3.
PeerJ ; 6: e5798, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30370186

RESUMEN

The most abundant and ubiquitous microbes in the surface ocean use light as an energy source, capturing it via complex chlorophyll-based photosystems or simple retinal-based rhodopsins. Studies in various ocean regimes compared the abundance of these mechanisms, but few investigated their expression. Here we present the first full seasonal study of abundance and expression of light-harvesting mechanisms (proteorhodopsin, PR; aerobic anoxygenic photosynthesis, AAnP; and oxygenic photosynthesis, PSI) from deep-sequenced metagenomes and metatranscriptomes of marine picoplankton (<1 µm) at three coastal stations of the San Pedro Channel in the Pacific Ocean. We show that, regardless of season or sampling location, the most common phototrophic mechanism in metagenomes of this dynamic region was PR (present in 65-104% of the genomes as estimated by single-copy recA), followed by PSI (5-104%) and AAnP (5-32%). Furthermore, the normalized expression (RNA to DNA ratio) of PR genes was higher than that of oxygenic photosynthesis (average ± standard deviation 26.2 ± 8.4 vs. 11 ± 9.7), and the expression of the AAnP marker gene was significantly lower than both mechanisms (0.013 ± 0.02). We demonstrate that PR expression was dominated by the SAR11-cluster year-round, followed by other Alphaproteobacteria, unknown-environmental clusters and Gammaproteobacteria. This highly dynamic system further allowed us to identify a trend for PR spectral tuning, in which blue-absorbing PR genes dominate in areas with low chlorophyll-a concentrations (<0.25 µgL-1). This suggests that PR phototrophy is not an accessory function but instead a central mechanism that can regulate photoheterotrophic population dynamics.

4.
Science ; 350(6267): 1533-7, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26612836

RESUMEN

As anthropogenic carbon dioxide (CO2) emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to more than 20% from 1965 through 2010. We used random forest models to examine more than 20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling.


Asunto(s)
Dióxido de Carbono/metabolismo , Calentamiento Global , Fitoplancton/metabolismo , Océano Atlántico , Calor , Océanos y Mares , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA