Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Neurobiol Dis ; 108: 45-53, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28757328

RESUMEN

Interferon-γ (IFN-γ) has been implicated in the pathogenesis of multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The type-1 cannabinoid receptors (CB1Rs) are heavily involved in MS pathophysiology, and a growing body of evidence suggests that mood disturbances reflect specific effects of proinflammatory cytokines on neuronal activity. Here, we investigated whether IFN-γ could exert a role in the anxiety- and depressive-like behavior observed in mice with EAE, and in the modulation of CB1Rs. Anxiety and depression in fact are often diagnosed in MS, and have already been shown to depend on cannabinoid system. We performed biochemical, behavioral and electrophysiological experiments to assess the role of IFN-γ on mood control and on synaptic transmission in mice. Intracerebroventricular delivery of IFN-γ caused a depressive- and anxiety-like behavior in mice, associated with the selective dysfunction of CB1Rs controlling GABA transmission in the striatum. EAE induction was associated with increased striatal expression of IFN-γ, and with CB1R transmission deficits, which were rescued by pharmacological blockade of IFN-γ. IFN-γ was unable to replicate the effects of EAE on excitatory and inhibitory transmission in the striatum, but mimicked the effects of EAE on CB1R function in this brain area. Overall these results indicate that IFN-γ exerts a relevant control on mood, through the modulation of CB1R function. A better understanding of the biological pathways underling the psychological disorders during neuroinflammatory conditions is crucial for developing effective therapeutic strategies.


Asunto(s)
Ansiedad/inducido químicamente , Cuerpo Estriado/efectos de los fármacos , Depresión/inducido químicamente , Interferón gamma/farmacología , Nootrópicos/farmacología , Receptor Cannabinoide CB1/metabolismo , Afecto/efectos de los fármacos , Afecto/fisiología , Animales , Ansiedad/metabolismo , Cuerpo Estriado/metabolismo , Depresión/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Factores Inmunológicos/farmacología , Infusiones Intraventriculares , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos , Distribución Aleatoria , Técnicas de Cultivo de Tejidos
2.
J Biol Chem ; 289(1): 264-74, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24280216

RESUMEN

We combined in vitro amperometric, optical analysis of fluorescent false neurotransmitters and microdialysis techniques to unveil that cocaine and methylphenidate induced a marked depression of the synaptic release of dopamine (DA) in mouse striatum. In contrast to the classical dopamine transporter (DAT)-dependent enhancement of the dopaminergic signal observed at concentrations of cocaine lower than 3 µM, the inhibitory effect of cocaine was found at concentrations higher than 3 µM. The paradoxical inhibitory effect of cocaine and methylphenidate was associated with a decrease in synapsin phosphorylation. Interestingly, a cocaine-induced depression of DA release was only present in cocaine-insensitive animals (DAT-CI). Similar effects of cocaine were produced by methylphenidate in both wild-type and DAT-CI mice. On the other hand, nomifensine only enhanced the dopaminergic signal either in wild-type or in DAT-CI mice. Overall, these results indicate that cocaine and methylphenidate can increase or decrease DA neurotransmission by blocking reuptake and reducing the exocytotic release, respectively. The biphasic reshaping of DA neurotransmission could contribute to different behavioral effects of psychostimulants, including the calming ones, in attention deficit hyperactivity disorder.


Asunto(s)
Cocaína/farmacología , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Metilfenidato/farmacología , Sinapsinas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Exocitosis/efectos de los fármacos , Exocitosis/genética , Ratones , Fosforilación/efectos de los fármacos , Fosforilación/genética , Sinapsinas/genética
3.
Front Syst Neurosci ; 11: 43, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659770

RESUMEN

DYT1 dystonia is an early-onset, hyperkinetic movement disorder caused by a deletion in the gene TOR1A, which encodes the protein torsinA. Several lines of evidence show that in animal models of DTY1 dystonia, there is impaired basal dopamine (DA) release and enhanced acetylcholine tone. Clinically, anticholinergic drugs are the most effective pharmacological treatment for DYT1 dystonia, but the currently used agents are non-selective muscarinic antagonists and associated with side effects. We used a DYT1 ∆GAG knock-in mouse model (DYT1 KI) to investigate whether nicotine and/or a non-desensitizing nicotinic agonist, AZD1446, would increase DA output in DYT1 dystonia. Using in vivo microdialysis, we found that DYT1 KI mice showed significantly increased DA output and greater sensitivity to nicotine compared to wild type (WT) littermate controls. In contrast, neither systemic injection (0.25-0.75 mg/kg) or intrastriatal infusion (30 µM-1 mM) of AZD1446 had a significant effect on DA efflux in WT or DYT1 KI mice. In vitro, we found that AZD1446 had no effect on the membrane properties of striatal spiny projection neurons (SPNs) and did not alter the spontaneous firing of ChI interneurons in either WT or DYT1 KI mice. We did observe that the firing frequency of dopaminergic neurons was significantly increased by AZD1446 (10 µM), an effect blocked by dihydro-beta-erythroidine (DHßE 3 µM), but the effect was similar in WT and DYT1 KI mice. Our results support the view that DYT1 models are associated with abnormal striatal cholinergic transmission, and that the DYT1 KI animals have enhanced sensitivity to nicotine. We found little effect of AZD1446 in this model, suggesting that other approaches to nicotinic modulation should be explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA