Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Periodontol ; 50(5): 642-656, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36644813

RESUMEN

AIM: To explore the potential mechanisms of neuroinflammation (microglia, blood-brain barrier [BBB] permeability, and the sphingosine-1-phosphate [S1P] pathways) resulting from the association between periodontitis and depression in rats. MATERIALS AND METHODS: This pre-clinical in vivo experimental study used Wistar rats, in which experimental periodontitis (P) was induced by using oral gavages with Porphyromonas gingivalis and Fusobacterium nucleatum. Then, a chronic mild stress (CMS) model was implemented to induce a depressive-like behaviour, resulting in four groups: P with CMS (P+CMS+), P without CMS (P+CMS-), CMS without P (P-CMS+), and control (P-CMS-). After harvesting brain samples, protein/mRNA expression analyses and fluorescence immunohistochemistry were performed in the frontal cortex (FC). Results were analysed by ANOVA. RESULTS: CMS exposure increased the number of microglia (an indicator of neuroinflammation) in the FC. In the combined model (P+CMS+), there was a decrease in the expression of tight junction proteins (zonula occludens-1 [ZO-1], occludin) and an increase in intercellular and vascular cell adhesion molecules (ICAM-1, VCAM-1) and matrix metalloproteinase 9 (MMP9), suggesting a more severe disruption of the BBB. The enzymes and receptors of S1P were also differentially regulated. CONCLUSIONS: Microglia, BBB permeability, and S1P pathways could be relevant mechanisms explaining the association between periodontitis and depression.


Asunto(s)
Barrera Hematoencefálica , Periodontitis , Ratas , Animales , Barrera Hematoencefálica/metabolismo , Ratas Wistar , Enfermedades Neuroinflamatorias , Depresión , Periodontitis/metabolismo
2.
J Neuroinflammation ; 17(1): 6, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906991

RESUMEN

BACKGROUND: The circumventricular organs (CVOs) are blood-brain-barrier missing structures whose activation through lipopolysaccharide (LPS) is a starting point for TLR-driven (Toll-like receptors) neuroinflammation. The aim of this study was to evaluate in the CVO area postrema (AP), subfornical organ (SFO), and median eminence (ME), the inflammatory response to two TLR4 agonists: LPS from Escherichia coli (EC-LPS), the strongest endotoxin molecule described, and LPS from Porphyromonas gingivalis (PG-LPS), a pathogenic bacteria present in the periodontium related to neuroinflammation in neurodegenerative/psychiatric diseases. The response to LPS from the cyanobacteria Rhodobacter sphaeroides (RS-LPS), a TLR4 antagonist with an interesting anti-inflammatory potential, was also assessed. METHODS: LPSs were intraperitoneally administered to Wistar rats and, as indicatives of neuroinflammation in CVOs, the cellular localization of the nuclear factor NF-κB was studied by immunofluorescence, and microglia morphology was quantified by fractal and skeleton analysis. RESULTS: Data showed that EC-LPS increased NF-κB nuclear translocation in the three CVOs studied and PG-LPS only induced NF-κB nuclear translocation in the ME. RS-LPS showed no difference in NF-κB nuclear translocation compared to control. Microglia in the three CVOs showed an ameboid-shape after EC-LPS exposure, whereas PG-LPS only elicited a mild tendency to induce an ameboid shape. On the other hand, RS-LPS produced a markedly elongated morphology described as "rod" microglia in the three CVOs. CONCLUSIONS: In conclusion, at the doses tested, EC-LPS induces a stronger neuroinflammatory response than PG-LPS in CVOs, which might be related to their different potency as TLR4 agonists. The non-reduction of basal NF-κB activation and induction of rod microglia by RS-LPS, a cell morphology only present in severe brain injury and infections, suggests that this molecule must be carefully studied before being proposed as an anti-inflammatory treatment for neuroinflammation related to neurodegenerative/psychiatric diseases.


Asunto(s)
Encéfalo/inmunología , Órganos Circunventriculares/inmunología , Inmunidad Innata/inmunología , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/inmunología , Animales , Encéfalo/efectos de los fármacos , Órganos Circunventriculares/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Masculino , FN-kappa B/inmunología , Ratas , Ratas Wistar , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/antagonistas & inhibidores
3.
Sci Rep ; 12(1): 4073, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260749

RESUMEN

The chronic inflammatory process that characterizes inflammatory bowel diseases (IBD) is mainly driven by T-cell response to microbial and environmental antigens. Psychological stress is a potential trigger of clinical flares of IBD, and sphingosine-1-phosphate (S1P) is involved in T-cell recruitment. Hence, stress impact and the absence of sphingosine kinase 2 (Sphk2), an enzyme of S1P metabolism, were evaluated in the colon of mice after sub-chronic stress exposure. Here, we show that sub-chronic stress increased S1P in the mouse colon, possibly due to a decrease in its degradation enzymes and Sphk2. S1P accumulation could lead to inflammation and immune dysregulation reflected by upregulation of toll-like receptor 4 (TLR4) pathway, inhibition of anti-inflammatory mechanisms, cytokine-expression profile towards a T-helper lymphocyte 17 (Th17) polarization, plasmacytosis, decrease in IgA+ lymphoid lineage cells (CD45+)/B cells/plasmablasts, and increase in IgM+ B cells. Stress also enhanced intestinal permeability. Sphk2 knockout mice presented a cytokine-expression profile towards a boosted Th17 response, lower expression of claudin 3,4,7,8, and structural abnormalities in the colon. Intestinal pathophysiology should consider stress and S1P as modulators of the immune response. S1P-based drugs, including Sphk2 potentiation, represent a promising approach to treat IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Fosfotransferasas (Aceptor de Grupo Alcohol) , Estrés Psicológico , Células Th17 , Animales , Colitis/genética , Colitis/inmunología , Colitis/metabolismo , Citocinas/inmunología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/inmunología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/metabolismo , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
4.
Front Mol Biosci ; 9: 887678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406277

RESUMEN

A colloidal synthesis' proof-of-concept based on the Bligh-Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.

5.
Eur Neuropsychopharmacol ; 34: 50-64, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32245674

RESUMEN

The central nervous system can respond to peripheral immune stimuli through the activation of the neurovascular unit. One of the cellular types implicated are perivascular macrophages (PVMs), hematopoietic-derived brain-resident cells located in the perivascular space. PVMs have been implicated in the immune surveillance and in the regulation of the accumulation/trafficking of macromolecules in brain-blood interfaces. Recent studies suggested that the role of PVMs could vary depending on the nature and duration of the immune challenge applied. Here, we investigate the role of PVMs in stress-induced neuroinflammation and oxidative/nitrosative consequences. The basal phagocytic activity of PVMs was exploited to selectively deplete them by ICV injection of liposomes encapsulating the pro-apoptotic drug clodronate. Acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat brain frontal cortex samples were assessed by western blot and RT-PCR analyses. The depletion of PVMs: (1) decreased tumor necrosis-α levels (2) prevented the Janus kinase/signal transducers and activators of transcription pathway and increased interleukin-6 receptor protein-expression in stress conditions; (3) prevented the stress-induced Toll-like receptor 4/Myeloid differentiation primary response 88 protein signaling pathway; (4) down-regulated the pro-inflammatory nuclear factor κB/cyclooxygenase-2 pathway; (5) prevented stress-induced lipid peroxidation and the concomitant increase of the endogenous antioxidant mediators nuclear factor (erythroid-derived 2)-like 2, glutathione reductase 1 and Parkinsonism-associated deglycase mRNA expression. Our results point to PVMs as regulators of stress-induced neuroinflammation and oxidative/nitrosative stress. Much more scientific effort is still needed to evaluate whether their selective manipulation is promising as a therapeutic strategy for the treatment of stress-related neuropsychopathologies.


Asunto(s)
Lóbulo Frontal/metabolismo , Sistema Glinfático/metabolismo , Macrófagos/metabolismo , Estrés Nitrosativo/fisiología , Estrés Oxidativo/fisiología , Estrés Psicológico/metabolismo , Animales , Mediadores de Inflamación/metabolismo , Masculino , Fagocitosis/fisiología , Ratas , Ratas Wistar , Restricción Física/fisiología , Restricción Física/psicología , Estrés Psicológico/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA