Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 34(11): 14920-14929, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918768

RESUMEN

The objective of the present study was to determine the effects of dry immersion, an innovative ground-based human model of simulated microgravity and extreme physical inactivity, on iron homeostasis and distribution. Twenty young healthy men were recruited and submitted to 5 days of dry immersion (DI). Fasting blood samples and MRI were performed before and after DI exposure to assess iron status, as well as hematological responses. DI increased spleen iron concentrations (SIC), whereas hepatic iron store (HIC) was not affected. Spleen iron sequestration could be due to the concomitant increase in serum hepcidin levels (P < .001). Increased serum unconjugated bilirubin, as well as the rise of serum myoglobin levels support that DI may promote hemolysis and myolysis. These phenomena could contribute to the concomitant increase of serum iron and transferrin saturation levels (P < .001). As HIC remained unchanged, increased serum hepcidin levels could be due both to higher transferrin saturation level, and to low-grade pro-inflammatory as suggested by the significant rise of serum ferritin and haptoglobin levels after DI (P = .003 and P = .003, respectively). These observations highlight the need for better assessment of iron metabolism in bedridden patients, and an optimization of the diet currently proposed to astronauts.


Asunto(s)
Hierro/metabolismo , Simulación de Ingravidez/efectos adversos , Adulto , Reposo en Cama/efectos adversos , Bilirrubina/sangre , Ferritinas/sangre , Hepcidinas/sangre , Humanos , Inmersión , Hígado/metabolismo , Masculino , Mioglobina/sangre , Bazo/metabolismo , Transferrina/análisis , Simulación de Ingravidez/métodos
2.
Clin Nutr ; 41(10): 2077-2086, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063575

RESUMEN

BACKGROUND & AIMS: Severe malnutrition exposes patients to adverse outcomes and a higher mortality risk. The Yucatan minipig, closer to human physiology than murine models could be a pertinent and innovative experimental model for studying the physiopathology and consequences of severe malnutrition. The present study aimed to determine whether a low calorie/low protein diet (LC/LP) can reproduce marasmus malnutrition in minipigs, and to characterize body composition, gut microbiota, malnutrition-related blood parameters, and histological and molecular skeletal muscle patterns. METHODS: Eleven Yucatan minipigs were subjected to two different diets: a standard control diet (ST) (n = 5) and a LC/LP diet (n = 6). LC/LP animals daily received 50% of an isocaloric low-protein diet (10.37 MJ/kg, 8.6% protein). Body composition was measured by computed tomography (CT-scan) before (T0) and after 8 weeks of diet (T8). Trapezius and biceps femoris muscles were sampled at the end of protocol to perform histological and molecular analyses. Gut microbiota composition were was also analyzed at T0 and T8 in fecal samples. RESULTS: Eight weeks of LC/LP diet significantly reduced body weight (-12.3 ± 9.5%, P = 0.03) and gut microbiota richness (i.e. number of observed species) (-10.4 ± 8.3%, P = 0.014) compared to baseline. After 8 weeks, LC/LP animals exhibited a significant reduction of retroperitoneal fat and skeletal muscle surface areas (P = 0.03 and P = 0.047, respectively), whereas these parameters remained unchanged in ST animals. These reductions were associated with lower muscle fiber cross-sectional area (CSA) in trapezius (P < 0.001) and biceps femoris (P = 0.003) in LC/LP animals compared to ST. LC/LP diet promoted an increase of AMP kinase phosphorylation in trapezius and biceps femoris (P = 0.05), but did not affect cytochrome c and COX IV protein content, markers of mitochondrial content. Gene and proteins involved in ubiquitin-proteasome system and apoptosis remained unchanged after 8 weeks of LC/LP diet both in trapezius and biceps femoris. CONCLUSION: All these findings support that this experimental minipig model of severe malnutrition is valid to mimic pathophysiological changes occurring in human protein-energy marasmus malnutrition and muscle atrophy associated with malnutrition, as observed in patients with secondary sarcopenia.


Asunto(s)
Desnutrición , Desnutrición Proteico-Calórica , Adenilato Quinasa , Animales , Citocromos c , Dieta con Restricción de Proteínas , Humanos , Desnutrición/complicaciones , Ratones , Complejo de la Endopetidasa Proteasomal , Desnutrición Proteico-Calórica/metabolismo , Porcinos , Porcinos Enanos , Ubiquitinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA