Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36499489

RESUMEN

Edentulism is the condition of having lost natural teeth, and has serious social, psychological, and emotional consequences. The need for implant services in edentulous patients has dramatically increased during the last decades. In this study, the effects of concentrated growth factor (CGF), an autologous blood-derived biomaterial, in improving the process of osseointegration of dental implants have been evaluated. Here, permeation of dental implants with CGF has been obtained by using a Round up device. These CGF-coated dental implants retained a complex internal structure capable of releasing growth factors (VEGF, TGF-ß1, and BMP-2) and matrix metalloproteinases (MMP-2 and MMP-9) over time. The CGF-permeated implants induced the osteogenic differentiation of human bone marrow stem cells (hBMSC) as confirmed by matrix mineralization and the expression of osteogenic differentiation markers. Moreover, CGF provided dental implants with a biocompatible and biologically active surface that significantly improved adhesion of endothelial cells on CGF-coated implants compared to control implants (without CGF). Finally, data obtained from surgical interventions with CGF-permeated dental implants presented better results in terms of optimal osseointegration and reduced post-surgical complications. These data, taken together, highlight new and interesting perspectives in the use of CGF in the dental implantology field to improve osseointegration and promote the healing process.


Asunto(s)
Implantes Dentales , Osteogénesis , Humanos , Células Endoteliales , Péptidos y Proteínas de Señalización Intercelular/farmacología , Oseointegración , Propiedades de Superficie , Titanio/farmacología , Materiales Biocompatibles Revestidos/farmacología
2.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916919

RESUMEN

Reactive intermediate deaminase (Rid) proteins are enzymes conserved in all domains of life. UK114, a mammalian member of RidA subfamily, has been firstly identified as a component of liver perchloric acid-soluble proteins (L-PSP). Although still poorly defined, several functions have been attributed to the mammalian protein UK114/RIDA, including the reactive intermediate deamination activity. The expression of UK114/RIDA has been observed in some tumors, arousing interest in this protein as an evaluable tumor marker. However, other studies reported a negative correlation between UK114/RIDA expression, tumor differentiation degree and cell proliferation. This work addressed the question of UK114/RIDA expression in human non-tumor HEK293 cell lines and in some human tumor cell lines. Here we reported that human RIDA (hRIDA) was expressed in all the analyzed cell line and subjected to lysine (K-)succinylation. In HEK293, hRIDA K-succinylation was negatively correlated to the cell proliferation rate and was under the control of SIRT5. Moreover, K-succinylation clearly altered hRIDA quantification by immunoblotting, explaining, at least in part, some discrepancies about RIDA expression reported in previous studies. We found that hRIDA was able to deaminate reactive enamine-imine intermediates and that K-succinylation drastically reduced deaminase activity. As predicted by in silico analysis, the observed reduction of deaminase activity has been related to the drastic alterations of hRIDA structure inferred by K-succinylation. The role of hRIDA and the importance of its K-succinylation in cell metabolism, especially in cancer biology, have been discussed.


Asunto(s)
Proliferación Celular/fisiología , Proteínas de Choque Térmico/metabolismo , Ribonucleasas/metabolismo , Línea Celular , Activación Enzimática , Expresión Génica , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Lisina/metabolismo , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional , Ribonucleasas/química , Ribonucleasas/genética , Sirtuinas/metabolismo , Relación Estructura-Actividad
3.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445573

RESUMEN

Concentrated Growth Factors (CGF) represent new autologous (blood-derived biomaterial), attracting growing interest in the field of regenerative medicine. In this study, the chemical, structural, and biological characterization of CGF was carried out. CGF molecular characterization was performed by GC/MS to quantify small metabolites and by ELISA to measure growth factors and matrix metalloproteinases (MMPs) release; structural CGF characterization was carried out by SEM analysis and immunohistochemistry; CGF has been cultured, and its primary cells were isolated for the identification of their surface markers by flow cytometry, Western blot, and real-time PCR; finally, the osteogenic differentiation of CGF primary cells was evaluated through matrix mineralization by alizarin red staining and through mRNA quantification of osteogenic differentiation markers by real-time PCR. We found that CGF has a complex inner structure capable of influencing the release of growth factors, metabolites, and cells. These cells, which could regulate the production and release of the CGF growth factors, show stem features and are able to differentiate into osteoblasts producing a mineralized matrix. These data, taken together, highlight interesting new perspectives for the use of CGF in regenerative medicine.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular/farmacología , Osteoblastos/citología , Osteogénesis , Células Madre/citología , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo
4.
Biochim Biophys Acta ; 1861(5): 471-81, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26869449

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease characterized by accumulation of lipid droplets in hepatocytes. Enhanced release of non-esterified fatty acids from adipose tissue accounts for a remarkable fraction of accumulated lipids. However, the de novo lipogenesis (DNL) is also implicated in the etiology of the NAFLD. Sterol Regulatory Element-Binding Protein-1 (SREBP-1) is a transcription factor modulating the expression of several lipogenic enzymes. In the present study, in order to investigate the effect of lipid droplet accumulation on DNL, we used a cellular model of steatosis represented by HepG2 cells cultured in a medium supplemented with free oleic and palmitic fatty acids (FFAs). We report that FFA supplementation induces the expression of genes coding for enzymes involved in the DNL as well as for the transcription factor SREBP-1a. The SREBP-1a mRNA translation, dependent on an internal ribosome entry site (IRES), and the SREBP-1a proteolytic cleavage are activated by FFAs. Furthermore, FFA treatment enhances the expression and the nucleus-cytosolic shuttling of hnRNP A1, a trans-activating factor of SREBP-1a IRES. The binding of hnRNP A1 to the SREBP-1a IRES is also increased upon FFA supplementation. The relocation of hnRNP A1 and the consequent increase of SREBP-1a translation are dependent on the p38 MAPK signal pathway, which is activated by FFAs. By RNA interference approach, we demonstrate that hnRNP A1 is implicated in the FFA-induced expression of SREBP-1a and of its target genes as well as in the lipid accumulation in cells.


Asunto(s)
Regiones no Traducidas 5' , Hepatocitos/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Lipogénesis , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Sitios de Unión , Regulación de la Expresión Génica , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Sitios Internos de Entrada al Ribosoma , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Hígado/efectos de los fármacos , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Oléico/farmacología , Ácido Palmítico/farmacología , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/genética , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Factores de Tiempo , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Int J Mol Sci ; 18(4)2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28362337

RESUMEN

The thyroid hormones (THs) 3,3',5,5'-tetraiodo-l-thyronine (T4) and 3,5,3'-triiodo-l-thyronine (T3) influence many metabolic pathways. The major physiological function of THs is to sustain basal energy expenditure, by acting primarily on carbohydrate and lipid catabolism. Beyond the mobilization and degradation of lipids, at the hepatic level THs stimulate the de novo fatty acid synthesis (de novo lipogenesis, DNL), through both the modulation of gene expression and the rapid activation of cell signalling pathways. 3,5-Diiodo-l-thyronine (T2), previously considered only a T3 catabolite, has been shown to mimic some of T3 effects on lipid catabolism. However, T2 action is more rapid than that of T3, and seems to be independent of protein synthesis. An inhibitory effect on DNL has been documented for T2. Here, we give an overview of the mechanisms of THs action on liver fatty acid metabolism, focusing on the different effects exerted by T2 and T3 on the regulation of the DNL. The inhibitory action on DNL exerted by T2 makes this compound a potential and attractive drug for the treatment of some metabolic diseases and cancer.


Asunto(s)
Diyodotironinas/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Modelos Biológicos
6.
Biochim Biophys Acta ; 1831(12): 1679-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23948263

RESUMEN

Thyroid hormone 3,5,3'-triiodo-l-thyronine (T3) is known to affect cell metabolism through both the genomic and non-genomic actions. Recently, we demonstrated in HepG2 cells that T3 controls the expression of SREBP-1, a transcription factor involved in the regulation of lipogenic genes. This occurs by activation of a cap-independent translation mechanism of its mRNA. Such a process is dependent on non-genomic activation of both MAPK/ERK and PI3K/Akt pathways. The physiological role of 3,5-diiodo-l-thyronine (T2), previously considered only as a T3 catabolite, is of growing interest. Evidences have been reported that T2 rapidly affects some metabolic pathways through non-genomic mechanisms. Here, we show that T2, unlike T3, determines the block of proteolytic cleavage of SREBP-1 in HepG2 cells, without affecting its expression at the transcriptional or translational level. Consequently, Fatty Acid Synthase expression is reduced. T2 effects depend on the concurrent activation of MAPKs ERK and p38, of Akt and PKC-δ pathways. Upon the activation of these signals, apoptosis of HepG2 cells seems to occur, starting at 12h of T2 treatment. PKC-δ appears to act as a switch between p38 activation and Akt suppression, suggesting that this PKC may function as a controller in the balance of pro-apoptotic (p38) and anti-apoptotic (Akt) signals in HepG2 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Diyodotironinas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Triyodotironina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Biochem J ; 449(2): 543-53, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23106379

RESUMEN

A growing amount of evidence suggests the involvement of ER (endoplasmic reticulum) stress in lipid metabolism and in the development of some liver diseases such as steatosis. The transcription factor SREBP-1 (sterol-regulatory-element-binding protein 1) modulates the expression of several enzymes involved in lipid synthesis. Previously, we showed that ER stress increased the SREBP-1a protein level in HepG2 cells, by inducing a cap-independent translation of SREBP-1a mRNA, through an IRES (internal ribosome entry site), located in its leader region. In the present paper, we report that the hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1) interacts with 5'-UTR (untranslated region) of SREBP-1a mRNA, as an ITAF (IRES trans-acting factor), regulating SREBP-1a expression in HepG2 cells and in primary rat hepatocytes. Overexpression of hnRNP A1 in HepG2 cells and in rat hepatocytes increased both the SREBP-1a IRES activity and SREBP-1a protein level. Knockdown of hnRNP A1 by small interfering RNA reduced either the SREBP-1a IRES activity or SREBP-1a protein level. hnRNP A1 mediates the increase of SREBP-1a protein level and SREBP-1a IRES activity in Hep G2 cells and in rat hepatocytes upon tunicamycin- and thapsigargin-induced ER stress. The induced ER stress triggered the cytosolic relocation of hnRNP A1 and caused the increase in hnRNP A1 bound to the SREBP-1a 5'-UTR. These data indicate that hnRNP A1 participates in the IRES-dependent translation of SREBP-1a mRNA through RNA-protein interaction. A different content of hnRNP A1 was found in the nuclei from high-fat-diet-fed mice liver compared with standard-diet-fed mice liver, suggesting an involvement of ER stress-mediated hnRNP A1 subcellular redistribution on the onset of metabolic disorders.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Animales , Sitios de Unión/genética , Northern Blotting , Western Blotting , Células Cultivadas , Dieta Alta en Grasa , Estrés del Retículo Endoplásmico/efectos de los fármacos , Expresión Génica , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Interferencia de ARN , ARN Mensajero/metabolismo , Ratas , Ribosomas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Tapsigargina/farmacología , Tunicamicina/farmacología
8.
J Cell Physiol ; 227(6): 2388-97, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21826653

RESUMEN

Liver is an important target for thyroid hormone actions. T(3) exerts its effects by two mechanisms: (i) Genomic actions consisting of T(3) link to nuclear receptors that bind responsive elements in the promoter of target genes, (ii) non-genomic actions including integrin αvb3 receptor-mediated MAPK/ERK and PI3K/Akt/mTOR-C1 activation. SREBP-1a, SREBP-1c, and SREBP-2 are transcription factors involved in the regulation of lipogenic genes. We show in Hep G2 cells that T(3) determined a dose- and time-dependent increase in the level of the precursor form of SREBP-1 without affecting SREBP-1 mRNA abundance. T(3) also induced phosphorylation of ERK1/2, Akt and of mTOR-C1 target S6K-P70, and the cytosol-to-membrane translocation of PKC-α. Modulation of SREBP-1 protein level by T(3) was dependent on MAPK/ERK, PI3K/Akt/mTOR-C1 pathway activation since the MEK inhibitor PD98059 or the PI3K inhibitor LY294002 abolished the stimulatory effect of T(3) . Conversely, the effect of T(3) on SREBP-1 level was enhanced by using rapamycin, mTOR-C1 inhibitor. These data suggest a negative control of mTOR-C1 target S6K-P70 on PI3K/Akt pathway. The effect of T(3) on SREBP-1 content increased also by using PKC inhibitors. These inhibitors increased the action of T(3) on Akt phosphorylation suggesting that conventional PKCs may work as negative regulators of the T(3) -dependent SREBP-1 increase. T(3) effects were partially abrogated by tetrac, an inhibitor of the T(3) -αvß3 receptor interaction and partially evoked by T(3) analog T(3) -agarose. These findings support a model in which T(3) activates intracellular signaling pathways which may be involved in the increment of SREBP-1 level through an IRES-mediated translation mechanism.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triyodotironina/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Retroalimentación Fisiológica , Células Hep G2 , Humanos , Integrina alfaVbeta3/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Serina-Treonina Quinasas TOR , Factores de Tiempo , Regulación hacia Arriba
9.
Materials (Basel) ; 14(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34832344

RESUMEN

Magnesium (Mg)- and silicon (Si)-substituted hydroxyapatite (HA) scaffolds were synthesized using the sponge replica method. The influence of Mg2+ and SiO44- ion substitution on the microstructural, mechanical and biological properties of HA scaffolds was evaluated. All synthesized scaffolds exhibited porosity >92%, with interconnected pores and pore sizes ranging between 200 and 800 µm. X-ray diffraction analysis showed that ß-TCP was formed in the case of Mg substitution. X-ray fluorescence mapping showed a homogeneous distribution of Mg and Si ions in the respective scaffolds. Compared to the pure HA scaffold, a reduced grain size was observed in the Mg- and Si-substituted scaffolds, which greatly influenced the mechanical properties of the scaffolds. Mechanical tests revealed better performance in HA-Mg (0.44 ± 0.05 MPa), HA-Si (0.64 ± 0.02 MPa) and HA-MgSi (0.53 ± 0.01 MPa) samples compared to pure HA (0.2 ± 0.01 MPa). During biodegradability tests in Tris-HCl, slight weight loss and a substantial reduction in mechanical performances of the scaffolds were observed. Cell proliferation determined by the MTT assay using hBMSC showed that all scaffolds were biocompatible, and the HA-MgSi scaffold seemed the most effective for cell adhesion and proliferation. Furthermore, ALP activity and osteogenic marker expression analysis revealed the ability of HA-Si and HA-MgSi scaffolds to promote osteoblast differentiation.

10.
Pharmaceutics ; 13(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946931

RESUMEN

Blood-derived concentrated growth factors (CGFs) represent a novel autologous biomaterial with promising applications in regenerative medicine. Angiogenesis is a key factor in tissue regeneration, but the role played by CGFs in vessel formation is not clear. The purpose of this study was to characterize the angiogenic properties of CGFs by evaluating the effects of its soluble factors and cellular components on the neovascularization in an in vitro model of angiogenesis. CGF clots were cultured for 14 days in cell culture medium; after that, CGF-conditioned medium (CGF-CM) was collected, and soluble factors and cellular components were separated and characterized. CGF-soluble factors, such as growth factors (VEGF and TGF-ß1) and matrix metalloproteinases (MMP-2 and -9), were assessed by ELISA. Angiogenic properties of CGF-soluble factors were analyzed by stimulating human cultured endothelial cells with increasing concentrations (1%, 5%, 10%, or 20%) of CGF-CM, and their effect on cell migration and tubule-like formation was assessed by wound healing and Matrigel assay, respectively. The expression of endothelial angiogenic mediators was determined using qRT-PCR and ELISA assays. CGF-derived cells were characterized by immunostaining, qRT-PCR and Matrigel assay. We found that CGF-CM, consisting of essential pro-angiogenic factors, such as VEGF, TGF-ß1, MMP-9, and MMP-2, promoted endothelial cell migration; tubule structure formation; and endothelial expression of multiple angiogenic mediators, including growth factors, chemokines, and metalloproteinases. Moreover, we discovered that CGF-derived cells exhibited features such as endothelial progenitor cells, since they expressed the CD34 stem cell marker and endothelial markers and participated in the neo-angiogenic process. In conclusion, our results suggest that CGFs are able to promote endothelial angiogenesis through their soluble and cellular components and that CGFs can be used as a biomaterial for therapeutic vasculogenesis in the field of tissue regeneration.

11.
Biology (Basel) ; 9(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143015

RESUMEN

Bone regeneration is a complex process regulated by several factors that control overlapping biological processes, coordinating interactions among distinct cell populations. There is a great interest in identifying new strategies for inducing osteogenesis in a safe and efficient manner. Concentrated Growth Factor (CGF) is an autologous blood derived product obtained by centrifugation of venous blood following the procedure set on the Silfradent device. In this study the effects of CGF on osteogenic differentiation of human Bone Marrow Stem Cells (hBMSC) in vitro have been investigated; hBMSC were cultured with CGF or osteogenic medium, for 21 days. The osteogenic differentiation was evaluated measuring alkaline phosphatase (ALP) enzyme activity, matrix mineralization by alizarin red staining and through mRNA and protein quantification of osteogenic differentiation markers by Real-time PCR and Western blotting, respectively. The treatment with CGF stimulated ALP activity and promoted matrix mineralization compared to control and seems to be more effective than osteogenic medium. Also, hBMSC lost mesenchymal markers and showed other osteogenic features. Our study showed for the first time that CGF alone is able to induce osteogenic differentiation in hBMSC. The application of CGF on hBMSC osteoinduction might offer new clinical and biotechnological strategies in the tissue regeneration field.

12.
Br J Pharmacol ; 156(5): 751-63, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19254279

RESUMEN

BACKGROUND AND PURPOSE: We showed previously that cisplatin inititates a signalling pathway mediated by PKC-delta/extracellular signal-regulated kinase (ERK), important for maintaining viability in PC Cl3 thyroid cells. The studies described herein examined whether c-fos was associated with cisplatin resistance and the signalling link between c-fos and PKC-delta/ERK. EXPERIMENTAL APPROACH: Cells were treated with various pharmacological inhibitors of PKCs and ERK, or were depleted of c-fos, PKC-delta, PKC-epsilon and caspase-3 by small interfering RNA (siRNA), then incubated with cisplatin and cytotoxicity assessed. KEY RESULTS: Cisplatin provokes the induction of c-fos and the activation of conventional PKC-beta, and novel PKC-delta and -epsilon. The cisplatin-provoked c-fos induction was decreased by Gö6976, a PKC-beta inhibitor; by siRNA for PKC-delta- but not that for PKC-epsilon or by PD98059, a mitogen-activated protein kinase/ERK kinase inhibitor. Expression of c-fos was abolished by GF109203X, an inhibitor of all PKC isoforms, or by PD98059 plus Gö6976 or by PKC-delta-siRNA plus Gö6976. When c-fos expression was blocked by siRNA, cisplatin cytotoxicity was strongly enhanced with increased caspase-3 activation. In PKC-delta-depleted cells treated with cisplatin, caspase-3 activation was increased and cell viability decreased. In these PKC-delta-depleted cells, PD98059 did not affect caspase-3 activation. CONCLUSIONS AND IMPLICATIONS: In PC Cl3 cells, in the cell signalling pathways that lead to cisplatin resistance, PKC-delta controls ERK activity and, together with PKC-beta, also the induction of c-fos. Hence, the protective role of c-fos in thyroid cells has the potential to provide new opportunities for therapeutic intervention.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Cisplatino/farmacología , Resistencia a Antineoplásicos , Proteína Quinasa C-delta/fisiología , Proteínas Proto-Oncogénicas c-fos/fisiología , Glándula Tiroides/citología , Animales , Diferenciación Celular , Línea Celular , Supervivencia Celular/efectos de los fármacos , Activación Enzimática , Isoenzimas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA