Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 96(1): e29407, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240403

RESUMEN

In response to the emergence of the monkeypox virus (MPXV) in Australia in May 2022, we developed and evaluated indirect immunofluorescence assays (IFA) for MPXV and Vaccinia virus (VACV) IgG and IgM antibodies using serum samples from patients with nucleic acid amplification test (NAAT)-confirmed mpox and uninfected unvaccinated controls. Additionally, 47 healthcare workers receiving two doses of the third-generation smallpox vaccine Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) undertook serial serum collection to describe the serological response to vaccination. MPXV antibodies were detected in 16/18 individuals with NAAT-confirmed mpox (sensitivity 0.89, specificity 1.00), and VACV antibodies were detected in 28/29 individuals who received two doses of MVA-BN vaccine (sensitivity 0.97, specificity 1.00). Detectable antibody in subjects historically vaccinated with early-generation vaccines against smallpox was found in 7/7 subjects, at a median of 48 years following vaccination. MPXV NAAT-positive patients with serum samples collected within the first 14 days after rash onset had detectable IgG and IgM in 9/12 and 5/12 of patients, respectively, with maintenance of IgG and disappearance of IgM titers after 60 days. While specificity was high when testing unvaccinated and uninfected subjects, significant cross-reactivity between MPXV and VACV antibodies was observed.


Asunto(s)
Mpox , Vacuna contra Viruela , Vaccinia , Humanos , Virus Vaccinia , Mpox/epidemiología , Mpox/prevención & control , Formación de Anticuerpos , Australia/epidemiología , Anticuerpos Antivirales , Monkeypox virus , Inmunoglobulina M , Inmunoglobulina G , Vacunas Atenuadas
2.
Phys Biol ; 20(4)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37224820

RESUMEN

Modelling evolution of foodborne pathogens is crucial for mitigation and prevention of outbreaks. We apply network-theoretic and information-theoretic methods to trace evolutionary pathways ofSalmonellaTyphimurium in New South Wales, Australia, by studying whole genome sequencing surveillance data over a five-year period which included several outbreaks. The study derives both undirected and directed genotype networks based on genetic proximity, and relates the network's structural property (centrality) to its functional property (prevalence). The centrality-prevalence space derived for the undirected network reveals a salient exploration-exploitation distinction across the pathogens, further quantified by the normalised Shannon entropy and the Fisher information of the corresponding shell genome. This distinction is also analysed by tracing the probability density along evolutionary paths in the centrality-prevalence space. We quantify the evolutionary pathways, and show that pathogens exploring the evolutionary search-space during the considered period begin to exploit their environment (their prevalence increases resulting in outbreaks), but eventually encounter a bottleneck formed by epidemic containment measures.


Asunto(s)
Brotes de Enfermedades , Epidemias
3.
BMC Infect Dis ; 23(1): 303, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158832

RESUMEN

The emergence of resistance to antiviral drugs increasingly used to treat SARS-CoV-2 infections has been recognised as a significant threat to COVID-19 control. In addition, some SARS-CoV-2 variants of concern appear to be intrinsically resistant to several classes of these antiviral agents. Therefore, there is a critical need for rapid recognition of clinically relevant polymorphisms in SARS-CoV-2 genomes associated with significant reduction of drug activity in virus neutralisation experiments. Here we present SABRes, a bioinformatic tool, which leverages on expanding public datasets of SARS-CoV-2 genomes and allows detection of drug resistance mutations in consensus genomes as well as in viral subpopulations. We have applied SABRes to detect resistance-conferring mutations in 25,197 genomes generated over the course of the SARS-CoV-2 pandemic in Australia and identified 299 genomes containing resistance conferring mutations to the five antiviral therapeutics that retain effectiveness against currently circulating strains of SARS-CoV-2 - Sotrovimab, Bebtelovimab, Remdesivir, Nirmatrelvir and Molnupiravir. These genomes accounted for a 1.18% prevalence of resistant isolates discovered by SABRes, including 80 genomes with resistance conferring mutations found in viral subpopulations. Timely recognition of these mutations within subpopulations is critical as these mutations can provide an advantage under selective pressure and presents an important step forward in our ability to monitor SARS-CoV-2 drug resistance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutación , Antivirales/farmacología , Antivirales/uso terapéutico
4.
Emerg Infect Dis ; 27(6): 1677-1680, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33818372

RESUMEN

An outbreak of severe acute respiratory syndrome coronavirus 2 infection occurred among church attendees after an infectious chorister sang at multiple services. We detected 12 secondary case-patients. Video recordings of the services showed that case-patients were seated in the same section, up to 15 m from the primary case-patient, without close physical contact, suggesting airborne transmission.


Asunto(s)
COVID-19 , Canto , Australia/epidemiología , Humanos , SARS-CoV-2
5.
PLoS Med ; 18(7): e1003656, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228725

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/patogenicidad , Adulto , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , SARS-CoV-2/inmunología
7.
J Clin Microbiol ; 58(9)2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32580953

RESUMEN

Salmonella is a highly diverse genus consisting of over 2,600 serovars responsible for high-burden food- and waterborne gastroenteritis worldwide. Sensitivity and specificity of PCR-based culture-independent diagnostic testing (CIDT) systems for Salmonella, which depend on a highly conserved gene target, can be affected by single nucleotide polymorphisms (SNPs), indels, and genomic rearrangements within primer and probe sequences. This report demonstrates the value of prospectively collected genomic data for verifying CIDT targets. We utilized the genomes of 3,165 Salmonella isolates prospectively collected and sequenced in Australia. The sequences of Salmonella CIDT PCR gene targets (ttrA, spaO, and invA) were systematically interrogated to measure nucleotide dissimilarity. Analysis of 52 different serovars and 79 multilocus sequencing types (MLST) demonstrated dissimilarity within and between PCR gene targets ranging between 0 and 81.3 SNP/kbp (0 and 141 SNPs). The lowest average dissimilarity was observed in the ttrA target gene used by the Roche LightMix at 2.0 SNP/kbp (range, 0 to 46.7); however, entropy across the gene demonstrates that it may not be the most stable CIDT target. While debate continues over the benefits and pitfalls of replacing bacterial culture with molecular assays, the growing volumes of genomic surveillance data enable periodic regional reassessment and validation of CIDT targets against both prevalent and emerging serovars. If PCR systems are to become the primary screening and diagnostic tool for laboratory diagnosis of salmonellosis, ongoing monitoring of the genomic diversity in PCR target regions is warranted, as is the potential inclusion of two Salmonella PCR targets in frontline diagnostic systems.


Asunto(s)
Infecciones por Salmonella , Salmonella enterica , Australia , Genómica , Humanos , Tipificación de Secuencias Multilocus , Salmonella/genética , Infecciones por Salmonella/diagnóstico , Salmonella enterica/genética
8.
Emerg Infect Dis ; 24(4): 751-753, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553318

RESUMEN

Multidrug- and colistin-resistant Salmonella enterica serotype 4,[5],12:i:- sequence type 34 is present in Europe and Asia. Using genomic surveillance, we determined that this sequence type is also endemic to Australia. Our findings highlight the public health benefits of genome sequencing-guided surveillance for monitoring the spread of multidrug-resistant mobile genes and isolates.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Infecciones por Salmonella/microbiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Genoma Bacteriano , Historia del Siglo XXI , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Tipificación de Secuencias Multilocus , Nueva Gales del Sur/epidemiología , Infecciones por Salmonella/historia , Salmonella enterica/clasificación , Secuenciación Completa del Genoma , Adulto Joven
9.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247056

RESUMEN

The city of Sydney, Australia, experienced a persistent outbreak of Legionella pneumophila serogroup 1 (Lp1) pneumonia in 2016. To elucidate the source and guide public health actions, the genomes of clinical and environmental Lp1 isolates recovered over 7 weeks were examined. A total of 48 isolates from human cases and cooling towers were sequenced and compared using single-nucleotide polymorphism (SNP)-based core-genome multilocus sequencing typing (MLST) and pangenome approaches. All three methods confirmed phylogenetic relatedness between isolates associated with outbreaks in the Central Business District (CBD) in March and May and those in suburb 1. These isolates were designated the "main cluster" and consisted of isolates from two patients from the CBD March outbreak, one patient and one tower isolate from suburb 1, and isolates from two cooling towers and three patients from the CBD May outbreak. All main cluster isolates were sequence type 211 (ST211), which previously has only been reported in Canada. Significantly, pangenome analysis identified mobile genetic elements containing a unique type IV A F-type secretion system (T4ASS), which was specific to the main cluster, and cocirculating clinical strains, suggesting a potential mechanism for increased fitness and persistence of the outbreak clone. Genome sequencing enabled linking of the geographically dispersed environmental sources of infection among the spatially and temporally coinciding cases of legionellosis in a highly populated urban setting. The discovery of a unique T4ASS emphasizes the role of genome recombination in the emergence of successful Lp1 clones.IMPORTANCE A new emerging clone has been responsible for a prolonged legionellosis outbreak in Sydney, Australia. The use of whole-genome sequencing linked two outbreaks thought to be unrelated and confirmed the outliers. These findings led to the resampling and subsequent identification of the source, guiding public health actions and bringing the outbreak to a close. Significantly, the outbreak clone was identified as sequence type 211 (ST211). Our study reports this ST in the Southern Hemisphere and presents a description of ST211 genomes from both clinical and environmental isolates. A unique mobile genetic element containing a type IV secretion system was identified in Lp1 ST211 isolates linked to the main cluster and Lp1 ST42 isolates that were cocirculating at the time of the outbreak.


Asunto(s)
Brotes de Enfermedades , Legionella pneumophila/genética , Enfermedad de los Legionarios/epidemiología , Polimorfismo de Nucleótido Simple , Humanos , Enfermedad de los Legionarios/microbiología , Tipificación de Secuencias Multilocus , Nueva Gales del Sur/epidemiología , Filogenia
10.
J Infect Dis ; 214(1): 105-13, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27056954

RESUMEN

BACKGROUND: Piperaquine, coformulated with dihydroartemisinin, is a component of a widely used artemisinin combination therapy. There is a paucity of data on its antimalarial activity as a single agent. Such data, if available, would inform selection of new coformulations. METHODS: We undertook a study in healthy subjects, using the induced blood stage malaria (IBSM) model to test the antimalarial activity of single doses of piperaquine (960, 640, and 480 mg) in 3 cohorts. In a pilot study in the third cohort, gametocyte clearance following administration of 15 mg, or 45 mg or no primaquine was investigated. RESULTS: Parasite clearance over the 48-hour period after piperaquine administration was more rapid in the 960 mg cohort, compared with the 640 mg cohort (parasite reduction ratio, 2951 [95% confidence interval {CI}, 1520-5728] vs 586 [95% CI, 351-978]; P < .001). All 24 subjects developed gametocytemia as determined by pfs25 transcripts. Clearance of pfs25 was significantly faster in those receiving primaquine than in those not receiving primaquine (P < .001). CONCLUSIONS: Piperaquine possesses rapid parasite-clearing activity, but monotherapy is followed by the appearance of gametocytemia, which could facilitate the spread of malaria. This new information should be taken into account when developing future antimalarial coformulations. CLINICAL TRIALS REGISTRATION: ACTRN12613000565741.


Asunto(s)
Antimaláricos/efectos adversos , Antimaláricos/uso terapéutico , Gametogénesis/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/aislamiento & purificación , Quinolinas/uso terapéutico , Adolescente , Adulto , Australia , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Plasmodium falciparum/efectos de los fármacos , Adulto Joven
11.
Antimicrob Agents Chemother ; 60(6): 3669-75, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27044554

RESUMEN

Effective progression of candidate antimalarials is dependent on optimal dosing in clinical studies, which is determined by a sound understanding of pharmacokinetics and pharmacodynamics (PK/PD). Recently, two important translational models for antimalarials have been developed: the NOD/SCID/IL2Rγ(-/-) (NSG) model, whereby mice are engrafted with noninfected and Plasmodium falciparum-infected human erythrocytes, and the induced blood-stage malaria (IBSM) model in human volunteers. The antimalarial mefloquine was used to directly measure the PK/PD in both models, which were compared to previously published trial data for malaria patients. The clinical part was a single-center, controlled study using a blood-stage Plasmodium falciparum challenge inoculum in volunteers to characterize the effectiveness of mefloquine against early malaria. The study was conducted in three cohorts (n = 8 each) using different doses of mefloquine. The characteristic delay in onset of action of about 24 h was seen in both NSG and IBSM systems. In vivo 50% inhibitory concentrations (IC50s) were estimated at 2.0 µg/ml and 1.8 µg/ml in the NSG and IBSM models, respectively, aligning with 1.8 µg/ml reported previously for patients. In the IBSM model, the parasite reduction ratios were 157 and 195 for the 10- and 15-mg/kg doses, within the range of previously reported clinical data for patients but significantly lower than observed in the mouse model. Linking mouse and human challenge models to clinical trial data can accelerate the accrual of critical data on antimalarial drug activity. Such data can guide large clinical trials required for development of urgently needed novel antimalarial combinations. (This trial was registered at the Australian New Zealand Clinical Trials Registry [http://anzctr.org.au] under registration number ACTRN12612000323820.).


Asunto(s)
Antimaláricos/farmacocinética , Malaria Falciparum/tratamiento farmacológico , Mefloquina/farmacocinética , Plasmodium falciparum/efectos de los fármacos , Adulto , Animales , Antimaláricos/sangre , Antimaláricos/farmacología , Estudios de Cohortes , Modelos Animales de Enfermedad , Esquema de Medicación , Cálculo de Dosificación de Drogas , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Femenino , Voluntarios Sanos , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Masculino , Mefloquina/sangre , Mefloquina/farmacología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Plasmodium falciparum/crecimiento & desarrollo
12.
Emerg Infect Dis ; 21(2): 365-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25626138

RESUMEN

We investigated the presence of 4 human polyomaviruses (PyVs) (WU, KI, Merkel cell, and Malawi) in respiratory specimens from a community-based birth cohort. These viruses typically were acquired when children were ≈1 year of age. We provide evidence that WU, KI, and Malawi, but not Merkel cell PyVs, might have a role in respiratory infections.


Asunto(s)
Infecciones por Polyomavirus/epidemiología , Infecciones por Polyomavirus/virología , Poliomavirus/clasificación , Humanos , Lactante , Recién Nacido , Queensland/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología
13.
J Infect Dis ; 208(10): 1688-94, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23908484

RESUMEN

BACKGROUND: Major impediments to development of vaccines and drugs for Plasmodium vivax malaria are the inability to culture this species and the extreme difficulty in undertaking clinical research by experimental infection. METHODS: A parasite bank was collected from a 49-year-old woman with P. vivax infection, characterized, and used in an experimental infection study. RESULTS: The donor made a full recovery from malaria after collection of a parasite bank, which tested negative for agents screened for in blood donations. DNA sequence analysis of the isolate indicated that it was clonal. Two subjects inoculated with the isolate became polymerase chain reaction positive on days 8 and 9, with onset of symptoms and positive blood smears on day 14, when they were treated with artemether-lumefantrine, with rapid clinical and parasitologic response. Transcripts of the parasite gene pvs25 that is expressed in gametocytes, the life cycle stage infectious to mosquitoes, were first detected on days 11 and 12. CONCLUSIONS: This experimental system results in in vivo parasite growth, probably infectious to mosquitoes. It offers the opportunity to undertake studies previously impossible in P. vivax that will facilitate a better understanding of the pathology of vivax malaria and development of antimalarial drugs and vaccines. Trial Registration. ANZCTR: 12612001096842.


Asunto(s)
Voluntarios Sanos , Estadios del Ciclo de Vida , Malaria Vivax/parasitología , Plasmodium vivax/crecimiento & desarrollo , Animales , Resistencia a Medicamentos/genética , Femenino , Genotipo , Humanos , Malaria Vivax/diagnóstico , Malaria Vivax/tratamiento farmacológico , Persona de Mediana Edad , Parasitemia/diagnóstico , Parasitemia/parasitología , Plasmodium vivax/genética , Polimorfismo Genético
14.
Microbiol Spectr ; : e0279122, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916949

RESUMEN

A major outbreak of the globally significant Salmonella Enteritidis foodborne pathogen was identified within a large clinical data set by a program of routine WGS of clinical presentations of salmonellosis in New South Wales, Australia. Pangenome analysis helped to quantify and isolate prophage content within the accessory partition of the pangenome. A prophage similar to Gifsy-1 (henceforth GF-1L) was found to occur in all isolates of the outbreak core SNP cluster, and in three other isolates. Further analysis revealed that the GF-1L prophage carried the gogB virulence factor. These observations suggest that GF-1L may be an important marker of virulence for S. Enteritidis population screening and, that anti-inflammatory, gogB-mediated virulence currently associated with Salmonella Typhimurium may also be displayed by S. Enteritidis. IMPORTANCE We examined 5 years of genomic and epidemiological data for the significant global foodborne pathogen, Salmonella enterica. Although Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis) is the leading cause of salmonellosis in the USA and Europe, prior to 2018 it was not endemic in the southern states of Australia. However, in 2018 a large outbreak led to the endemicity of S. Enteritidis in New South Wales, Australia, and a unique opportunity to study this phenomenon. Using pangenome analysis we uncovered that this clone contained a Gifsy-1-like prophage harboring the known virulence factor gogB. The prophage reported has not previously been described in S. Enteritidis isolates.

15.
Microbiol Spectr ; 11(6): e0220223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37966271

RESUMEN

IMPORTANCE: This study provides a laboratory framework to ensure ongoing relevance and performance of amplification-based whole genome sequencing to strengthen public health surveillance during extended outbreaks or pandemics. The framework integrates regular reviews of the performance of a genomic surveillance system and highlights the importance of ongoing monitoring and the identification and implementation of improvements to whole genome sequencing methods to enhance public health responses to pathogen outbreaks.


Asunto(s)
Genómica , Salud Pública , Brotes de Enfermedades , Secuenciación Completa del Genoma/métodos , Vigilancia en Salud Pública
16.
Cell Genom ; 3(12): 100443, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38116115

RESUMEN

Genomic sequencing has emerged as a powerful tool to enhance early pathogen detection and characterization with implications for public health and clinical decision making. Although widely available in developed countries, the application of pathogen genomics among low-resource, high-disease burden settings remains at an early stage. In these contexts, tailored approaches for integrating pathogen genomics within infectious disease control programs will be essential to optimize cost efficiency and public health impact. We propose a framework for embedding pathogen genomics within national surveillance plans across a spectrum of surveillance and laboratory capacities. We adopt a public health approach to genomics and examine its application to high-priority diseases relevant in resource-limited settings. For each grouping, we assess the value proposition for genomics to inform public health and clinical decision-making, alongside its contribution toward research and development of novel diagnostics, therapeutics, and vaccines.

17.
Viruses ; 14(8)2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-36016382

RESUMEN

In order to rapidly differentiate sublineages BA.1 and BA.2 of the SARS-CoV-2 variant of concern Omicron, we developed a real-time reverse-transcriptase polymerase chain reaction to target the discriminatory spike protein deletion at amino acid position 69-70 (S:del69-70). Compared to the gold standard of whole genome sequencing, the candidate assay was 100% sensitive and 99.4% specific. Sublineage typing by RT-PCR can provide a rapid, high throughput and cost-effective method to enhance surveillance as well as potentially guiding treatment and infection control decisions.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , ARN Viral/genética , ADN Polimerasa Dirigida por ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética
18.
Front Microbiol ; 13: 824217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663867

RESUMEN

Background: Low frequency intrahost single nucleotide variants (iSNVs) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been increasingly recognised as predictive indicators of positive selection. Particularly as growing numbers of SARS-CoV-2 variants of interest (VOI) and concern (VOC) emerge. However, the dynamics of subgenomic RNA (sgRNA) expression and its impact on genomic diversity and infection outcome remain poorly understood. This study aims to investigate and quantify iSNVs and sgRNA expression in single and longitudinally sampled cohorts over the course of mild and severe SARS-CoV-2 infection, benchmarked against an in vitro infection model. Methods: Two clinical cohorts of SARS-CoV-2 positive cases in New South Wales, Australia collected between March 2020 and August 2021 were sequenced. Longitudinal samples from cases hospitalised due to SARS-CoV-2 infection (severe) (n = 16) were analysed and compared with cases that presented with SARS-CoV-2 symptoms but were not hospitalised (mild) (n = 23). SARS-CoV-2 genomic diversity profiles were also examined from daily sampling of culture experiments for three SARS-CoV-2 variants (Lineage A, B.1.351, and B.1.617.2) cultured in VeroE6 C1008 cells (n = 33). Results: Intrahost single nucleotide variants were detected in 83% (19/23) of the mild cohort cases and 100% (16/16) of the severe cohort cases. SNP profiles remained relatively fixed over time, with an average of 1.66 SNPs gained or lost, and an average of 4.2 and 5.9 low frequency variants per patient were detected in severe and mild infection, respectively. sgRNA was detected in 100% (25/25) of the mild genomes and 92% (24/26) of the severe genomes. Total sgRNA expressed across all genes in the mild cohort was significantly higher than that of the severe cohort. Significantly higher expression levels were detected in the spike and the nucleocapsid genes. There was significantly less sgRNA detected in the culture dilutions than the clinical cohorts. Discussion and Conclusion: The positions and frequencies of iSNVs in the severe and mild infection cohorts were dynamic overtime, highlighting the importance of continual monitoring, particularly during community outbreaks where multiple SARS-CoV-2 variants may co-circulate. sgRNA levels can vary across patients and the overall level of sgRNA reads compared to genomic RNA can be less than 1%. The relative contribution of sgRNA to the severity of illness warrants further investigation given the level of variation between genomes. Further monitoring of sgRNAs will improve the understanding of SARS-CoV-2 evolution and the effectiveness of therapeutic and public health containment measures during the pandemic.

19.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215779

RESUMEN

Whole-genome sequencing of viral isolates is critical for informing transmission patterns and for the ongoing evolution of pathogens, especially during a pandemic. However, when genomes have low variability in the early stages of a pandemic, the impact of technical and/or sequencing errors increases. We quantitatively assessed inter-laboratory differences in consensus genome assemblies of 72 matched SARS-CoV-2-positive specimens sequenced at different laboratories in Sydney, Australia. Raw sequence data were assembled using two different bioinformatics pipelines in parallel, and resulting consensus genomes were compared to detect laboratory-specific differences. Matched genome sequences were predominantly concordant, with a median pairwise identity of 99.997%. Identified differences were predominantly driven by ambiguous site content. Ignoring these produced differences in only 2.3% (5/216) of pairwise comparisons, each differing by a single nucleotide. Matched samples were assigned the same Pango lineage in 98.2% (212/216) of pairwise comparisons, and were mostly assigned to the same phylogenetic clade. However, epidemiological inference based only on single nucleotide variant distances may lead to significant differences in the number of defined clusters if variant allele frequency thresholds for consensus genome generation differ between laboratories. These results underscore the need for a unified, best-practices approach to bioinformatics between laboratories working on a common outbreak problem.


Asunto(s)
Biología Computacional/normas , Consenso , Genoma Viral , Laboratorios/normas , Salud Pública , SARS-CoV-2/genética , Australia , Biología Computacional/métodos , Humanos , Filogenia , SARS-CoV-2/clasificación , Secuenciación Completa del Genoma
20.
Int J Infect Dis ; 117: 65-73, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35108613

RESUMEN

OBJECTIVES: To enhance monitoring of high-burden foodborne pathogens, there is opportunity to combine pangenome data with network analysis. METHODS: Salmonella enterica subspecies Enterica serovar Enteritidis isolates were referred to the New South Wales (NSW) Enteric Reference Laboratory between August 2015 and December 2019 (1033 isolates in total), inclusive of a confirmed outbreak. All isolates underwent whole genome sequencing. Distances between genomes were quantified by in silico multiple-locus variable-number tandem repeat analysis (MLVA) as well as core single nucleotide polymorphisms (SNPs), which informed the construction of undirected networks. Centrality-prevalence spaces were generated from the undirected networks. Components on the undirected SNP network were considered alongside a phylogenetic tree representation. RESULTS: Outbreak isolates were identified as distinct components on the MLVA and SNP networks. The MLVA network-based centrality-prevalence space did not delineate the outbreak, whereas the outbreak was delineated in the SNP network-based centrality-prevalence space. Components on the undirected SNP network showed a high concordance to the SNP clusters based on phylogenetic analysis. CONCLUSIONS: Bacterial whole-genome data in network-based analysis can improve the resolution of population analysis. High concordance of network components and SNP clusters is promising for rapid population analyses of foodborne Salmonella spp. owing to the low overhead of network analysis.


Asunto(s)
Infecciones por Salmonella , Salmonella enteritidis , Brotes de Enfermedades , Humanos , Repeticiones de Minisatélite , Filogenia , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enteritidis/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA