Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biosensors (Basel) ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35624589

RESUMEN

Glucose management indicator (GMI) is frequently used as a substitute for HbA1c, especially when using telemedicine. Discordances between GMI and HbA1c were previously mostly reported in populations with type 1 diabetes (T1DM) using real-time CGM. Our aim was to investigate the accordance between GMI and HbA1c in patients with diabetes using intermittent scanning CGM (isCGM). In this retrospective cross-sectional study, patients with diabetes who used isCGM >70% of the time of the investigated time periods were included. GMI of four different time spans (between 14 and 30 days), covering a period of 3 months, reflected by the HbA1c, were investigated. The influence of clinical- and isCGM-derived parameters on the discordance was assessed. We included 278 patients (55% T1DM; 33% type 2 diabetes (T2DM)) with a mean HbA1c of 7.63%. The mean GMI of the four time periods was between 7.19% and 7.25%. On average, the absolute deviation between the four calculated GMIs and HbA1c ranged from 0.6% to 0.65%. The discordance was greater with increased BMI, a diagnosis of T2DM, and a greater difference between the most recent GMI and GMI assessed 8 to 10 weeks prior to HbA1c assessment. Our data shows that, especially in patients with increased BMI and T2DM, this difference is more pronounced and should therefore be considered when making therapeutic decisions.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Glucemia , Automonitorización de la Glucosa Sanguínea , Estudios Transversales , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/diagnóstico , Glucosa , Hemoglobina Glucada/análisis , Humanos , Obesidad , Estudios Retrospectivos
2.
Genome Res ; 15(10): 1336-43, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16169924

RESUMEN

Natronomonas pharaonis is an extremely haloalkaliphilic archaeon that was isolated from salt-saturated lakes of pH 11. We sequenced its 2.6-Mb GC-rich chromosome and two plasmids (131 and 23 kb). Genome analysis suggests that it is adapted to cope with severe ammonia and heavy metal deficiencies that arise at high pH values. A high degree of nutritional self-sufficiency was predicted and confirmed by growth in a minimal medium containing leucine but no other amino acids or vitamins. Genes for a complex III analog of the respiratory chain could not be identified in the N. pharaonis genome, but respiration and oxidative phosphorylation were experimentally proven. These studies identified protons as coupling ion between respiratory chain and ATP synthase, in contrast to other alkaliphiles using sodium instead. Secretome analysis predicts many extracellular proteins with alkaline-resistant lipid anchors, which are predominantly exported through the twin-arginine pathway. In addition, a variety of glycosylated cell surface proteins probably form a protective complex cell envelope. N. pharaonis is fully equipped with archaeal signal transduction and motility genes. Several receptors/transducers signaling to the flagellar motor display novel domain architectures. Clusters of signal transduction genes are rearranged in haloarchaeal genomes, whereas those involved in information processing or energy metabolism show a highly conserved gene order.


Asunto(s)
Genoma Arqueal , Halobacteriaceae/genética , Secuencias de Aminoácidos , Transporte de Electrón , Halobacteriaceae/fisiología , Datos de Secuencia Molecular , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA