Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 292: 112730, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991830

RESUMEN

River hydromorphology has long been subjected to huge anthropogenic pressures with severe negative impacts on related ecosystems' functioning and water quality. Therefore, improving river hydromorphological conditions represents a priority task in sustainable river management and requires proper assessment tools. It is well known that riparian vegetation plays a crucial role in sustaining river hydromorphological conditions. However, it has been nearly neglected in most hydromorphological assessment protocols, including the European Water Framework Directive (WFD). This paper reviews and synthesizes the relevance of riparian vegetation for river hydromorphology, focusing on its contribution to streamflow and sediment regime conditions. We also examine how riparian vegetation is considered in the WFD and how it is included in national hydromorphological protocols currently in use. Our findings point to a temporal mismatch between the date when the WFD came into force and the emergence of scientific and technologic advances in riparian vegetation dynamism and bio-geomorphic modeling. To overcome this misalignment, we present promising approaches for the characterization and assessment of riparian vegetation, which include the identification of vegetation units and indicators at multiple scales to support management and restoration measures. We discuss the complexity of riparian vegetation assessment, particularly with respect to the establishment of river-type-based reference conditions and the monitoring and management targets, and propose some attributes that can serve as novel indicators of the naturalness vs. artificiality of riparian vegetation. We argue that the hydromorphological context of the WFD should be revisited and offer guidance to integrate riparian vegetation in river hydromorphological monitoring and assessment.


Asunto(s)
Ecosistema , Ríos , Monitoreo del Ambiente , Presión , Calidad del Agua
2.
J Environ Manage ; 202(Pt 2): 392-402, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28190693

RESUMEN

Implementing long-term monitoring programs that effectively inform conservation plans is a top priority in environmental management. In floodplain forests, historical pressures interplay with the complex multiscale dynamics of fluvial systems and require integrative approaches to pinpoint drivers for their deterioration and ecosystem services loss. Combining a conceptual framework such as the Driver-Pressure-State-Impact-Response (DPSIR) with the development of valid biological indicators can contribute to the analysis of the driving forces and their effects on the ecosystem in order to formulate coordinated conservation measures. In the present study, we evaluate the initial results of a decade (2004-2014) of floodplain forest monitoring. We adopted the DPSIR framework to summarize the main drivers in land use and environmental change, analyzed the effects on biological indicators of foundation trees and compared the consistency of the main drivers and their effects at two spatial scales. The monitoring program was conducted in one of the largest and best preserved floodplain forests in SW Europe located within Doñana National Park (Spain) which is dominated by Salix atrocinerea and Fraxinus angustifolia. The program combined field (in situ) surveys on a network of permanent plots with several remote sensing sources. The accuracy obtained in spectral classifications allowed shifts in species cover across the whole forest to be detected and assessed. However, remote sensing did not reflect the ecological status of forest populations. The field survey revealed a general decline in Salix populations, especially in the first five years of sampling -a factor probably associated with a lag effect from past human impact on the hydrology of the catchment and recent extreme climatic episodes (drought). In spite of much reduced seed regeneration, a resprouting strategy allows long-lived Salix individuals to persist in complex spatial dynamics. This suggests the beginning of a recovery resulting from recent coordinated societal responses to control excessive water extraction in the catchment, highlighting the need for continuing long-term monitoring. The DPSIR framework proved useful as a conceptual tool in analyzing the entire environmental system, while both field and remote sensing approaches complemented each other in quantifying indicator trends, improving the monitoring design and informing conservation plans.


Asunto(s)
Bosques , Tecnología de Sensores Remotos , Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente , Europa (Continente) , Humanos , España
3.
Sci Rep ; 11(1): 21660, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737354

RESUMEN

The distance decay of community similarity (DDCS) is a pattern that is widely observed in terrestrial and aquatic environments. Niche-based theories argue that species are sorted in space according to their ability to adapt to new environmental conditions. The ecological neutral theory argues that community similarity decays due to ecological drift. The continuum hypothesis provides an intermediate perspective between niche-based theories and the neutral theory, arguing that niche and neutral factors are at the opposite ends of a continuum that ranges from competitive to stochastic exclusion. We assessed the association between niche-based and neutral factors and changes in community similarity measured by Sorensen's index in riparian plant communities. We assessed the importance of neutral processes using network distances and flow connection and of niche-based processes using Strahler order differences and precipitation differences. We used a hierarchical Bayesian approach to determine which perspective is best supported by the results. We used dataset composed of 338 vegetation censuses from eleven river basins in continental Portugal. We observed that changes in Sorensen indices were associated with network distance, flow connection, Strahler order difference and precipitation difference but to different degrees. The results suggest that community similarity changes are associated with environmental and neutral factors, supporting the continuum hypothesis.

4.
Sci Total Environ ; 653: 1168-1185, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30759557

RESUMEN

Riparian vegetation is a crucial component of fluvial systems and serves multiple socio-ecological functions. The objective of this review is to follow the scientific trajectory of studies of riparian vegetation throughout history and across regions and fields of knowledge. Such a synthesis is challenging because riparian vegetation is an open co-constructed socio-ecological system at the crossroads of the biosphere, hydrosphere, lithosphere, atmosphere and anthroposphere; thus, it exhibits a wide range of ecological patterns and functioning depending on climatic, morphological and land-use contexts. To address this, we used qualitative and quantitative approaches in our review of the scientific literature. From the scientific perspective, how riparian vegetation is studied has changed over time (e.g. development of modeling and geomatic approaches) and varies among fluvial systems and geographic areas (e.g. its relation to groundwater is usually studied more in Oceania and Asia than on other continents). This review revealed the lack of a single and well-identified scientific community that focuses on riparian vegetation. This is probably due to the nature of the subject, which includes diverse fields of knowledge and several applied issues: biodiversity, forestry, water quality, hydromorphology, restoration, ecology, etc. Some topics are actively regenerated (e.g. biogeomorphological approaches) and others are emerging, which reflects general trends in ecology (e.g. functional approaches). The literature review indicates that a substantial amount of knowledge already exists; therefore, a major priority of our study is to produce a clear and integrative understanding of riparian zone functioning to address the inherent complexity of these zones and remain valid across a wide diversity of geographical contexts. It is also essential to develop detailed analysis of the sociocultural dimension of riparian vegetation to understand the ecology of riparian zones and to improve riparian vegetation management according to local recommendations in order to maintain and improve its functions and services in the face of global changes.


Asunto(s)
Ecosistema , Fenómenos Fisiológicos de las Plantas , Biodiversidad , Ecología , Monitoreo del Ambiente , Bosques , Ríos , Calidad del Agua
5.
Sci Rep ; 9(1): 6741, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043695

RESUMEN

Quantifying the genetic diversity of riparian trees is essential to understand their chances to survive hydroclimatic alterations and to maintain their role as foundation species modulating fluvial ecosystem processes. However, the application of suitable models that account for the specific dendritic structure of hydrographic networks is still incipient in the literature. We investigate the roles of ecological and spatial factors in driving the genetic diversity of Salix salviifolia, an Iberian endemic riparian tree, across the species latitudinal range. We applied spatial stream-network models that aptly integrate dendritic features (topology, directionality) to quantify the impacts of multiple scale factors in determining genetic diversity. Based on the drift hypothesis, we expect that genetic diversity accumulates downstream in riparian ecosystems, but life history traits (e.g. dispersal patterns) and abiotic or anthropogenic factors (e.g. drought events or hydrological alteration) might alter expected patterns. Hydrological factors explained the downstream accumulation of genetic diversity at the intermediate scale that was likely mediated by hydrochory. The models also suggested upstream gene flow within basins that likely occurred through anemophilous and entomophilous pollen and seed dispersal. Higher thermicity and summer drought were related to higher population inbreeding and individual homozygosity, respectively, suggesting that increased aridity might disrupt the connectivity and mating patterns among and within riparian populations.


Asunto(s)
Bosques , Variación Genética , Genética de Población , Árboles/clasificación , Árboles/genética , Ecología , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA